Нефтегазоносность фундаментов, древних осадочных комплексов пород и примеры блокового строения нефтегазоносных бассейнов. Нефтегазоносные месторождения россии Где находится крупные месторождения нефти

Дальневосточная нефтегазоносная мегапровинция входит в пояс Тихоокеанской складчатости кайнозойского возра­ста, охватывающей на западе Анадырь, Камчатку, Курильские о-ва, Сахалин, Японские о-ва. К мегапровинции относится вся тер­ритория Дальнего Востока и примыкающих акваторий арктичес­ких и дальневосточных морей.

Дальневосточная нефтегазоносная мегапровинция включает ряд крупных нефтегазоносных провинций, перспективных в неф­тегазоносном отношении провинций и областей, самостоятельных нефтегазоносных областей и районов на всей территории Даль­него Востока и прилегающих акваторий, в том числе Охотскую НГП, Лаптевскую ПНГП, Восточно-Арктическую ПНГП, Южно-Чукотскую ПНГП, Усть-Индигирскую ПНГО, Притихоокеанскую НГП, Верхнебуреинский ПГР.

5.4.1. Охотская нефтегазоносная провинция

Охотская НГП включает акватории Охотского, частично Японского морей и примыкающие к ним земли Сахалинской, Ма­гаданской и Камчатской областей.«Площадь перспективных зе­мель провинции составляет 730 тыс. км 2 , в том числе 640 тыс. км 2 на акваториях.

Охотская НГП (рис. 249) располагается в зоне перехода от ма­терика к океану и включает структуры разной генетической при­роды. Западным ограничением провинции являются Сихотэ-Алиньский и Охотско-Чукотский мезозойские вулканогенные пояса, восточным - Камчатско-Курильская кайнозойская склад­чатая система. На юге, на акватории Японского моря, граница про­винции условно проведена по поднятию Ямато. В центральной ча­сти провинции находится Охотский срединный массив.

Фундамент провинции гетерогенен. Предполагается, что глу­бина его погружения максимальна в Восточно-Сахалинском, За­падно-Сахалинском, Охотско-Колпаковском прогибах (9000 - 10000 м), на поднятиях она составляет 1000 - 2000 м и менее.

Осадочный чехол образован формациями разного типа: гео­синклинального, орогенного, рифтового, эпиплатформенного. По вещественному составу это в основном терригенные и вулкано-генно-осадочные образования позднемелового, палеогенового, неогенового и плиоцен-четвертичного возрастов.

В пределах Камчатской и Хоккайдо-Сахалинской кайнозой­ских складчатых систем и Охотской ветви мезозоид осадочные образования концентрируются преимущественно в отрицатель­ных структурах и практически отсутствуют на крупных подня­тиях. На суше наиболее обширные области развития осадочной толщи приурочены к западному побережью Камчатки и север­ной части Сахалина.

На Западной Камчатке осадочный разрез представлен терри-генными породами палеоген-миоценового возраста. Мощность по­род меняется от 1 - 3 км в антиклинальных до 4 - 5 км в синклиналь­ных зонах. Эти структуры прослеживаются с суши в сопредельные районы акватории Охотского моря, но далее к западу осадочные отложения моноклинально погружаются к склону впадины Тинро, достигая в Охотско-Колпаковском прогибе мощности 6 - 8 км.

На Сахалине (рис. 250), как и на Камчатке, осадочные отложе­ния смяты в складки, образующие линейные протяженные анти-

Рис. 249. Охотская нефтегазоносная провинция.

Крупнейшие тектонические элементы обрамления: I - Охотско-Чукот-ский вулканогенный пояс, II - Сихотэ-Алиньский вулканогенный пояс, III - Центральнокамчатский мегантиклинорий.

Нефтегазоносные области: А - Северо-Восточно-Сахалинская, Б - Южно-Сахалинская, В - Западно-Сахалинская, Г - Западно-Камчатс­кая, Д - Ульянско-Мареканская, Е - Северо-Охотская, Ж - Централь-ноохотская, 3 - Южно-Охотская.

Месторождения: 1 - Пильтун-Астохское, 2 - Чайво, 3 Лунское, 4 - Изыльметьевское, !? - Восточно-Луговское, 6 - Среднекунжикское, 7 - Кшукское, 8 - Нижнеквакчикское

Рис. 250. Обзорная карта размеще­ ния кайнозойских нефтегазоносных осадочных бассейнов Сахалина (элементы тектонического райони­ рования по Радюшу В.М., 1998): 1 - осадочные бассейны: 1 - Бай­кальский (Байкальская впадина), 2 - Валский (Валская впадина), 3 - По-гибинский (Погибинский прогиб), 4 - Нышско-Тымский (Нышская и Тымская впадина), 5 - Пильтунский (Пильтунская впадина), 6 - Чайвин-ский (Чайвинская впадина), 7 - На-бильский (Набильская впадина), 8 - Лунский (Лунская впадина), 9 - По­граничный (Пограничная впадина), 10 - Макаровский (Макаровский прогиб) ,11- Дагинский (Дагинское поднятие), 12 - Западно-Сахалинс­кий (Александровский прогиб, Бош-няковское поднятие, Ламанонский прогиб, Красногорское поднятие, Чеховский прогиб, Холмское подня­тие, Крильонское поднятие), 13 - Анивский (Анивский прогиб), 14 - залив Терпения (прогиб залива Тер­пения), 15 - Шмидтовский (Шмид-товское поднятие); 2 - территория приложения компьютерной техно­логии прогнозирования в пределах Лунской впадины

клинальные и синклинальные зоны. Возраст отложений олигоцен-неогеновый. Максимальные (до 11 км) их мощности приурочены к прогибам в северной и восточной частях острова и на смежных акваториях. Основную часть осадочной толщи слагают верхнеми­оценовые отложения.

Осадочный слой в Южно-Охотской глубоководной впадине с субокеанической корой имеет мощность 2,5 - 4,5 км. Глубины до поверхности фундамента (второго слоя) меняются от 5 до 8 км. Южно-Охотская впадина сформировалась в результате интенсив­ного рифтогенеза, охватившего, главным образом, кору континен­тального строения. Довольно интенсивному рифтогенезу подвер­глась и юго-западная часть области развития субконтинентальной коры в центре Охотского моря.

Для Охотской НГП чрезвычайно характерно периферийное размещение основных осадочных бассейнов, концентрирующих большую часть объема осадочного чехла. К их числу относятся Сахалинские прогибы, Западно- и Восточно-Дерюгинские, Ульянско-Лисянский, Северо-Охотский, Западно-Камчатский, Охотско-Колпаковский, Тинровский и др., Южно-Охотская глубоководная впадина.

В провинции открыто 72 месторождения нефти и газа, из них 60 на о-ве Сахалин, 8 на присахалинском шельфе и 4 на п-вё Кам­чатка. Добыча нефти (с 1928 г.) и газа (с 1956 г.) ведется только на о-ве Сахалину

По современным представлениям о геологическом строении и условиях формирования и размещения месторождений нефти и газа в пределах Охотской НГП выделяются 8 нефтегазоносных областей, из которых половина - Северо-Восточно-Сахалинская, Южно-Сахалинская, Западно-Сахалинская и Западно-Камчатс­кая - характеризуются доказанной нефтегазоносностью, а ос­тальные - Ульянско-Мареканская, Северо-Охотская, Централь­но-Охотская и Южно-Охотская - предполагаемой.

" Для всех областей характерны общие, возможно нефтегазо­носные, и нефтегазоносные комплексы. Первые приурочены к меловым и палеогеновым отложениям, ко вторым относятся дае-хуринский (нижний миоцен), уйнинско-дагинский (средний мио­цен) и окобыкайско-нутовский (средний миоцен-плиоцен) комп­лексы. Все они сложены, в основном, терригенными породами. Основными НГК являются Уйнинско-Дагинский и Окобыкайско-

Нутовский.

Уйнинско-Дагинский НГК - главный объект поисково-разве­дочных работ на Северном Сахалине. Полоса распространения гли­нисто-песчаной и песчано-глинистой литофаций (40 - 70% песчано-алевритовых пород) в верхней части НГК, перекрытых глинами ни­зов окобыкайской свиты, протягивающаяся от акватории Сахалин­ского залива на юго-восток через Катанглийско-Луньский район на шельф Охотского моря, содержит 19 месторождений нефти и газа. В Пограничном районе залежи нефти открыты в нижней части НГК. В южной части острова преобладают песчано-глинистые угленос­ные отложения с содержанием песчаников до 40 - 60%.

На Северном Сахалине, в центральной и западной частях, в дагинско-уйнинском НГК развиты поровые коллекторы с откры­той пористостью 15 - 30% и проницаемостью до 1 мкм 2

Окобыкайско-Нутовский НГК объединяет отложения окобы-кайского и нутовского горизонтов Северного Сахалина, а на Юж­ном Сахалине - курасийского и маруямского горизонтов. Его максимальные мощности (до 7,5 км) характерны для Северо-Во­сточного Сахалина и сопредельного шельфа. Почти повсеместно в низах НГК развиты морские, преимущественно глинистые от­ложения. Лишь на Северо-Западном Сахалине НГК целиком представлен песчаными угленосными породами.

В пределах Северо-Восточного побережья у шельфа, где, как известно, размещено большинство месторождений нефти и газа, окобыкайский разрез сложен неравномерным переслаиванием песчано-алевритовых глинистых разностей (25 - 65% песчаников) общей мощностью 660 - 3500 м. На юге северо-восточного побе­режья количество песчано-алевритовых пород в окобыкайских от­ложениях резко уменьшается, и этот интервал разреза служит ре­гиональным флюидоупором для подстилающих песчаников дагин-ской свиты. В пределах северо-восточного шельфа Сахалина ниж­няя часть НГК замещается кремнисто-глинистыми породами с пла­стами песчаника. На юге Сахалина, на акватории Татарского за­лива, заливов Терпения и Анива в низах НГК развиты кремнисто-глинистые породы курасийской свиты.

Нутовско-Маруямская часть НГК почти повсеместно на о. Сахалин сложена преобладающими песчаниками лагунно-дельтовых и прибрежно-морских фаций. На крайнем северо-востоке острова в районе п-ова Шмидта и на северо-восточном шельфе в этой части НГК развиты чередующиеся песчано-глинистые и гли­нисто-песчаные прибрежно-морские и мелководно-морские литофации с оптимальным соотношением коллекторских и изолирую­щих пластов в интервале мощностью до 1 км (к нему приурочены продуктивные пласты Одоптинского и Чайвинского месторожде­ний) . В самой восточной лито-фациальной зоне (площадь Дагиморе) средняя часть НГК преимущественно глинистая, без хоро­ших коллекторов.

В Окобыкайско-Нутовском НГК преобладает поровый тип кол­лектора пористостью до 30% и проницаемостью до 1 мкм 2 . Хоро­шими коллекторскими свойствами характеризуются отложения комплекса, развитого в северной части острова и смежного шель­фа Охотского моря.

СЕВЕРО-ВОСТОЧНО-САХАЛИНСКАЯ НГО (рис. 251) площа­дью 67 тыс. км 2 (из них 24 тыс. км 2 на суше) является наиболее изу­ченной частью Охотской НГП. Осадочный чехол представлен пес­чаниками и алевролитами, переслаивающимися с глинами и крем­нисто-вулканогенными породами общей толщиной до 10 км. Вы­деляются три нефтегазоносных региональных комплекса.

Нижнемиоценовый (даехуринский) НГК терригенный, крем­нисто-глинистый толщиной до 1500 м. Порово-трещинные коллек­торы образованы литифицированными кремнистыми породами, покрышка - глинами даехуринской свиты.

Рис. 251. Схема расположения месторождений нефти и газа :

1 - береговая линия; 2 - выходы фундамента на поверхность; 3 - ре­гиональные разрывы; 4 - глубина залегания фундамента, км; 5 - синк­линальные зоны - основные очаги нефтегазообразования; 6 - зоны или группы зон нефтегазонакопления с доказанной нефтегазоноснос-тью: I - Лангрыйская, II - Астрахановская, III - Гыргыланьи-Глухар-ская, IV - Волчинско-Сабинская, V - Эспенбергская, VI - Охино-Эхабинская, VII - Одоптинская, VIII - Паромайская, IX - Чайвинская, X - Восточно-Дагинская, XI - Ныйская, XII - Конгинская: 7 - 10 - ме­сторождения нефти и газа по величине геологических запасов (млн т): 7 - крупные (более 100): 12 - Одопту-море, 13 - Пильтун-Астохское, 14 - Аркутун-Дагинское, 15 - Чайво, 22 - Лунское, 23 - Киринское; 8 - относительно крупные (10- 100): 1 - Колендо, 2 - Оха, 3 - Эхаби, 4 - Восточное Эхаби, 5 - Тунгор, 6 - Волчинка, 7 - Западное Сабо, 8 - Сабо, 9 - Кыдыланьи, 10 - Мухто, 11 - Паромай, 16 - Усть-Эвай, 17 - им. Р.С. Мирзоева, 18 - Монги, 19 - Углекуты, 20 - Катангли, 21 - Набиль, 24 - Окружное; 9 - мелкие (1 -10): 10- очень мелкие (менее 1); 11 - 15 - типы месторождений по фазовому составу: 11 - нефтяные, 12 - газонефтяные, 13 - нефтегазовые, 14 - газовые,

15 - газоконденсатные

Нижне-среднемиоценовый (уйнинско-дагинский) НГКтерри-генный угленосный толщиной до 3000 м. Коллекторами служат тер-ригенные пласты в слоистой толще уйнинской и дагинской свит, региональной покрышкой - глины низов окобыкайской свиты.

Средне-верхнемиоценовый (окобыкайско-нутовский) НГК терригенный угленосный толщиной до 7000 м. В толще пересла­ивания коллекторами являются песчаники, покрышками - пе­рекрывающие их глины.

Возможно нефтегазоносные донеогеновые комплексы харак­теризуются, как правило, высокой степенью уплотнения пород.

К настоящему времени на северо-востоке Сахалина открыто 64 месторождения, в том числе семь в прибрежных зонах шельфа. Две трети ресурсов углеводородов области приходятся на окобы­кайско-нутовский комплекс. Среди месторождений преобладают многопластовые с залежами сводового типа и элементами текто­нического и литологического экранирования. Глубина залежей меняется от 50 до 3300 м. Основные месторождения на суше (Ок­ружное (рис. 252), Восточно-Дагинское (рис. 253), Восточно-Эха-бинское (рис. 254), Охинское (рис. 255), Эхабинское (рис. 256), Эрри, Тунгорское (рис. 257), Колендинское (рис. 258), Паромайс-кое (рис. 259), Шхунное (рис. 260), Некрасовское (рис. 261), Запад­но-Сабинское (рис. 262), Восточное Эхаби и др.) в значительной степени выработаны. Месторождения на шельфе отличаются боль­шими запасами и более благоприятными условиями разработки (Лунское, 1Пильтун-Астохское, Аркутун-Дагинское, Одопту-море и др.), а в море острее стоят проблемы экологии. С дальнейшим развитием морских работ связываются основные перспективы расширения сырьевой базы в рассматриваемой НГО.

Окружное нефтяное месторождение (см. рис. 252) приуро­чено к одноименной брахиантиклинальной складке. Открыто в 1971 г. Расположено на берегу Охотского моря: западная его поло­ вина находится на территории острова, а восточная - в аква­ тории Охотского моря. Свод складки сложен породами барской свиты. На западном крыле углы падения 15-30°, на восточном они несколько круче. Кроме того, восточное крыло осложнено продоль­ ным разрывом. Плотность нефти 828,1 кг/м 3 , содержание серы 0,21, парафина 0,66%.

Восточно-Дагинское газонефтяное месторождение (см. рис. 253) расположено в нижнем течении р. Даги и представляет собой бра- хиантиклинальную складку, разбитую рядом разрывов. Открытое

Рис. 252. Окружное нефтяное месторождение :

1 - поисковые скважины, давшие нефть; 2 - изогипсы по электрорепе­ру внутри верхней части борской свиты; 3 - разрывы; 4 - нефтеносный горизонт; 5 - борская свита

1970 г., разрабатывается с 1974 г. Открыты две залежи: газонеф­ тяная в низах окобыкайской свиты и нефтяная - в верхней части дагинской свиты. Нефть имеет плотность 839,8кг/м 3 , содержание серы 0,31, парафина 12,24; пластовое давление 199,5 кгс/см 2 . Плот­ ность газа 0,5866 кг/м 3 , содержание метана 95,8 %.

Рис. 253. Восточно-Дагинское газонефтяное месторождение :

1 - изогипсы по кровле дагинской свиты; 2 - разрывы; 3 - контур нефтегазоносности; 4, 5, 6 - песчаные, глинистые и песчано-глинистые по­роды; 7 - нефть; 8 - нефть и газ

Охинское нефтяное месторождение (см. рис. 255) приуроче­ но к асимметричной, сильно нарушенной сбросами брахиантик- линали с крутым восточным (30-70°) и пологим западным (15-20°) крыльями. Амплитуда и площадь структуры увеличиваются с глу­ биной соответственно от 400 до 600 м и от 10 до 20 км 2 .

Открытое 1923г., разрабатывается с 1923г. Продуктивные пласты характеризуются сильной литологической изменчивос­ тью. Эффективные мощности их меняются от 1 до 90 м, порис­ тость 14-30%, проницаемость составляет (1-1500)-10" 15 м 2 . За-

Рис. 254. Восточно-Эхабинское нефтяное месторождение :

А - структурная карта надвинутой части структуры по кровле XVII пласта, Б - то же поднадвиговой части структуры по кровле 25-го пласта; 1 - изогипсы по кровле XVII и соответствующего ему 25-го пластов; 2 - разрывы; контуры: 3 - нефтеносности XVII и 25-го пластов, 4 - газоносно­сти 25-го пласта; 5 - нефть; 6 - газ; 7 - глинистые, 8 - песчаные породы

лежи пластовые, сводовые, тектонически экранированные. В на­чале разработки все залежи характеризовались режимом раство­ ренного газа, который постепенно перешел в гравитационный. Нефть тяжелая, плотностью 0,91-0,93 г/см 3 , смолистая (акциз­ ных смол 20-40 %).

Эхабинское нефтяное месторождение (см. рис. 256) приуро­ чено к антиклинальной складке, в строении которой принимают участие песчано-глинистые отложения миоцен-плиоценового воз­ раста. Открытое 1936г., разрабатывается с 1937г. Эхабинская брахиантиклиналъная складка северо-западного простирания име­ ет длину 6 км, ширину 2 км и амплитуду ловушки 250 м, асиммет­ рична, с пологим западным и крутым (до 65°) восточным крылом, осложненным продольным взбросом. Плоскость последнего накло­ нена на запад, амплитуда смещения 50-250 м. Складка по окобы- кайским горизонтам имеет сундучную форму, а по дагинским - гребневидную. На месторождении открыто восемь нефтяных за­ лежей и одна газовая. Коллекторами для нефти и газа служат пес­ ки и песчаники, эффективная пористость которых изменяется по площади в очень широких пределах - от 3 до 30%; в среднем по пластам она составляет 17-18%. Проницаемость коллекторов из­ меняется от 4 до 155 мдарси. Эффективная мощность четырех пластов 12-24 м, остальных - не превышает 9 % .Все залежи пла­ стовые сводовые и, за исключением трех пластов, срезанные раз­ рывом на восточном крыле.

Тунгорское нефтегазоконденсатное месторождение (см. рис. 257) приурочено к брахиантиклинали меридионального про­ стирания с углами падения восточного крыла 45", а западного до 20°. Открыто в 1958 г., разрабатывается с 1960 г. По продуктив­ ному окобыкайскому горизонту амплитуда складки 130м, площадь 8 км. Первый промышленный приток нефти получен в 1957 г. На месторождении открыто 15 залежей: 3 нефтяных, 7 газовых и 5 газоконденсатных, приуроченных к песчаным пластам с эффек­ тивной мощностью от 3 до 56 м, открытой пористостью 16- 22% и проницаемостью (1-140)-10 -1 4 м 2 . Залежи пластовые сводо­ вые, высота от 15 до 95 м. Нефтяные залежи характеризуются режимом растворенного газа с влиянием одностороннего напо­ ра краевых вод, вследствие чего залежи частично смещены на восточное крыло. Начальное пластовое давление в XX пласте 21,5 МПа, рабочие дебиты в начале эксплуатации 130-160т/сут, средний газовый фактор 180 м 3 /т.

Рис. 256. Эхабинское нефтяное месторождение :

1 - изогипсы по кровле XIII пласта; 2 - контур нефтеносности; 3 - разрывы; 4 - нефть; 5 - газ; 6 - глинистые, 7 - песчаные породы

Рис. 257. Тунгорское нефтегазоконденсатное месторождение :

а - структурная карта по кровле пласта XX; б - геологический разрез; 1 - изогипсы кровли XX, м; 2 - контур нефтеносности; 3 - нефть; 4 - газ; 5 - покрышка; 6 - песчаные породы

Рис. 258. Колендинское газонефтяное месторождение :

1 - изогипськ а - по кровле XVII пласта, б - по кровле XXI пласта; 2 - разрывы; контуры: 3 - газоносности XVII пласта, 4 - нефтеносности XVII пласта, 5 - нефтеносности XXI пласта для южной периклинали; 6 - нефть;

7 - газ; 8, 9 - глинистые и песчаные породы соответственно

Колендинское газонефтяное месторождение (см.. рис. 258) приурочено к асимметричной брахиантиклинали северо-западно­ го простирания, с углами падения западного крыла 5-7°, восточ­ ного 12-15°. Открыто в 1961 г., разрабатывается с 1964 г. Неф­ тегазоносны отложения дагинской и окобыкайской свит среднего и верхнего миоцена. В интервале глубин 1000-1600м установлено шесть газовых залежей и одна газонефтяная. Залежи пластовые сводовые. Газ преимущественно метановый; нефть тяжелая, плотностью 0,874-0,927 г/см. 3 , содержит много смол (24-48 %) и парафина (2 %).

Паромайское нефтяное месторождение (см. рис. 259) приуро­ чено к одноименной антиклинальной складке. Открыто в 1951 г., разрабатывается с 1951 г. Вскрытый скважинами разрез сложен песчано-глинистыми отложениями, расчлененными на нутовскую и окобыкайскую свиты. Паромайская антиклиналь имеет длину око­ ло 20 км и осложнена несколькими более мелкими складками. Запад­ ное крыло структуры с углами падения в присводовой части 60-80° нарушено продольным взбросо-надвигом, по которому сводовая часть надвинута на относительно пологое западное крыло. Плос­ кость разрыва наклонена на восток, амплитуда смещения дости­ гает в своде 700 м и уменьшается к югу. Нефтяные залежи приуро­ чены к поднадвиговой части структуры, разбитой поперечными и диагональными нарушениями (преимущественно сбросового харак­ тера) на многочисленные блоки. Амплитуды сбросов изменяются от 10 до 200 м. На месторождении открыты 12 залежей нефти, причем две залежи имеют газовые шапки. Песчаные пласты, содер­жащие нефть и газ, имеют эффективную мощность от 2 до J 5 м и пористость 27-19%, которая уменьшается вниз по разрезу. Все залежи по типу ловушек относятся к пластовым тектонически экранированным (поднадвиговым) и, кроме того, осложненным по­ перечными и диагональными разрывами. Нефти месторождения относительно легкие, с плотностью 815,7-840,6 кг/м 3 . Содержат парафина 0,19-3,48, серы 0,14-0,31 %; выход легких фракций (до 300°С) составляет 75-84 %. Газы метановые, плотностью 0,6553- 0,7632 кг/м 3 , с содержанием тяжелых углеводородов до 10-23 %.

Шхунное газонефтяное месторождение (см. рис. 260) приуро­ чено к самой северной антиклинальной складке Гыргыланьинской зонынефтегазонакопления. Открытое 1964г., разрабатывается с 1972г. Структура имеет широкий свод, относительно крутое (25- 30°) восточное крыло и пологое (15-20°) западное. Диагональными разрывами она разбита на ряд блоков. Наиболее крупным является разрыв северо-западного простирания, по которому опущена север­ ная периклиналь. Амплитуда этого нарушения достигает 240 м, плоскость разрыва наклонена на юго-запад под углом около 60°. На месторождении открыто 4 газовые и 5 нефтяных залежей. Все они приурочены к коллекторам нижнеокобыкайской подсвиты, имею­ щим, эффективную мощность от 12 до 53 м, пористость 25-26 % и проницаемость до 433 мдарси. Глубина залегания промышленных

Рис. 259. Паромайское нефтяное месторождение :

1 - изогипсы по кровле VIII пласта; 2 - разрывы; 3 - нефть; 4 - газ; 5 - контур нефтеносности; 6 - песчаные, 7 - глинистые породы

скоплений нефти и газа - от 650 до 1260 м.Все залежи нефти и одна залежь газа находятся в северном блоке и относятся к пластовым тектонически экранированным (на периклинали). В центральном блоке открыты залежи газа, которые по типу ловушек относятся

Рис. 260. Шхунное газонефтяное месторождение :

1 - йзогипсы по кровле VII пласта; 2 - разрывы; 3 - контуры: а - неф­теносности, б - газоносности; 4, 5, 6 - песчаные, глинистые и песчано-глинистые породы; 7 - нефть; 8 - газ

к пластовым сводовым, разбитым разрывами на блоки. Высота за­ лежей в своде не превышает 25 м, а на периклинали - 50 м. Нефть месторождения тяжелая, с плотностью 928,4-932,8 кг/м 3 ; содер­ жит акцизных смол до 12, серы -0,21-0,32, парафина -0,44-0,62%. Газ метановый, плотностью 0,5662-0,6233кг/м 3 , с содержанием тя­ желых углеводородов до 2,8%.

Некрасовское газонефтяное месторождение (см. рис. 261) приурочено к брахиантиклинальной асимметричной складке с кру­тым восточным (до 40°) и пологим западным (10-15°) крыльями. Открытое 1957г., разрабатывается с 1963г. Строение складки- на глубине (по отложениям окобыкайской свиты) значительно ус­ ложнено большим количеством разрывных нарушений с амплиту- дамидоЗООм. Открыто 10 залежей:2 нефтяные, 3 газонефтяные и 5 газовых. Нефти месторождения легкие, плотность их колеб­ лется от 775 до 843 кг/м 3 . Содержание серы составляет 0,1-0,3, парафина - до 2%. Выход легких фракций (до 300° С) достига­ ет 70-90%. Установлена высокая растворимость нефти в газе, наличие конденсата. Начальный газовый фактор дости­ гает 2000 м э /т. Все залежи относятся к пластовым сводовым, разбитым разрывами на блоки.

Коллектором для нефти и газа служит разнозернистый пес­ чаник с эффективной пористостью около 18 %, проницаемостью до 150 мДарси. Дебиты нефти изменяются от 10-15до 42т/"сут­ ки, дебиты газа достигают 75-100 тыс. м/сутки. Нефтьлегкая, плотность 797-821,2 кг/м 3 , содержание акцизных смол 6-7, пара­ фина 1-2, серы 0,1-0,2 %. Выход легких фракций 77-94 %. Началь­ ное пластовое давление 242,5 кгс/см 2 , пластовая температура 84,5°С. Газовый фактор колеблется от 475 до 1600 м 3 /т. В составе газа преобладает метан (85,4-90,0%), отмечено большое содер­жание этана и высших углеводородов (до 10%).

Западно-Сабинское газонефтяное месторождение (рис. 262) расположено западнее Сабинского и приурочено к антиклиналь­ ной складке, осложняющей западное крыло антиклинальной зоны. Открыто в 1961 г., разрабатывается с 1966 г. Представляет со­ бой куполовидное поднятие размером 3,3x5,5 км, нарушенное мно­ гочисленными сбросами с амплитудами от нескольких десятков до 200 м. Углы падения породна крыльях не превышают 5-6°. От­крыто 6 залежей: 4 нефтяные, одна газонефтяная и одна газовая. Нефтяная залежь VIII пласта по запасам является наибольшей. Пласт, залегающий на глубине 1263-1407 м, представлен череда-

ванием тонких песчаных и глинистых прослоев общей мощностью до 39 м. Средняя эффективная мощность 11м. Пористость пес­ чаных коллекторов составляет 20 %, проницаемость в среднем - 300 мДарси. Нефтеносность VIII пласта впервые была установ­ лена в скв. 1, при испытании которой получен приток нефти с де­ битом 12 т/сутки (через 6-миллиметровый штуцер). Пластовое давление в залежи 125,2 кгс/см 2 , начальный газовый фактор 30- 40м 3 /т. Нефть тяжелая (плотность 973кг/м 3 ), слабопарафинис-тая (1,8 %), бессернистая. Высота нефтяной залежи 110м.

Южно-Охинское газонефтяное месторождение приурочено к одноименной куполовидной складке размером 2x1,5 км и ампли­ тудой поднятия около 80 м. В северной ее части проходит сброс северо-восточного простирания с амплитудой 400 м. Два других разрыва, но уже северо-западного простирания, с амплитудой 40 и 140м, осложняют свод и южную периклиналь структуры. Склад­ ка по верхним горизонтам асимметрична: углы падения западного крыла 10-15°, восточного до 45°. Свод складки с глубиной смеща­ ется к западу на 800-900м. Открытое 1949г., разрабатывается с 1952 г. На месторождении открыто 6 залежей: 3 газовые, 2 газо­ вые с нефтяными оторочками и одна нефтяная. Все продуктив­ ные пласты сложены песками со средней пористостью 19-27 % и эффективной мощностью от 1 до 22м. Газ месторождения сухой, метановый, с плотностью 0,575-0,645кг/м 3 . Нефти имеют плот­ность 838-852кг/м 3 , содержат акцизных смол до 10, парафина до 6 %. Пластовые воды гидрокарбонатно-натриевые, с минерализа­ цией около 14 г/л.

Северо-Охинское газонефтяное месторождение приуроче­ но к небольшой антиклинальной складке, осложняющей северную периклиналь Охинской структуры. Свод ее сложен глинисто-пес­чаными осадками нижненутовской подсвиты, под которыми за­ легают песчано-глинистые отложения окобыкайской свиты мощ­ ностью 1100м. Открытое 1967г., разрабатывается с 1967г. От­крыто 5 залежей: одна газовая, две нефтяные с газовыми шапка­ ми и две нефтяные. Промышленные скопления залегают на глуби­ нах 900-1400 м. Эффективная мощность пластов колеблется от 8 до 23 м, пористость - от 20 до 23%. Пласты характеризуются резкой литологической изменчивостью. Нефти месторождения имеют плотность от 842,1 до 869,3 кг/м 3 , содержат 12-28% ак­ цизных смол и 0,6-2,8% парафина. Газы метановые, с плотнос­ тью 0,5871-0,5945 кг/м 3 , увеличивающейся вниз по разрезу.

Мухтинское газонефтяное месторождение является самым крупным месторождением Паромайской зоны нефтегазонакопле- ния. Приурочено к антиклинальной структуре. Открытое 1959г., разрабатывается с 1963г. Мухтинская антиклиналь отделена от Паромайской небольшим седловидным прогибом. Углы падения по­ род ее западного крыла в присводовой части составляют 50-85, восточного - 20-30°. Вдоль западного крыла складки проходит ре­ гиональный взбросо-надвиг с амплитудой 600-800 м, по которому восточный блок надвинут на западный; кроме того, поперечными и диагональными разрывами типа взбросов складка разбита на ряд блоков. Открыто 14 залежей: 3 газонефтяные, остальные нефтя­ ные. По типу ловушек залежи тектонически экранированные на периклинали и пластовые сводовые, разбитые на самостоятель­ ные блоки. Эффективная мощность пластов-коллекторов изменя­ ется обычно в пределах 5-20 м. Пористость коллекторов 21-30 %, проницаемость - до 500 мДарси. Нефти месторождения в четы­ рех верхних пластах имеют плотность 830-906,6, в нижних - 829,9-874,0 кг/м 3 ; содержание серы 0,1-0,2, парафина 0,7-3,2%. Газ метановый, с плотностью 0,5944-0,6232 кг/м 3 и содержанием тяжелых углеводородов 3,2-3,5 %. Воды гидрокарбонатно-натри- евые, с минерализацией 6-28 г/л, возрастающей вниз по разрезу.

Волчинское газонефтяное месторождение связано с круп­ ной антиклинальной складкой, осложненной в южной части более мелкими локальными структурами. Открыто в 1963 г., разраба­ тывается с 1972г. Месторождение многопластовое: в дагинской свите в отдельных тектонических блоках выявлены нефтяные залежи. На Северинской и Ключевской площадях (свод и южные пе- риклинальные блоки структуры) в окобыкайской свите установ­лено 10 газоносных пластов и, кроме того, в дагинской свите об­ наружена залежь газа. В пределах месторождения выявлен ряд сбросов с амплитудами до 200 м, которые часто служат текто­ ническими экранами для нефтяных и газовых скоплений. Коллек­ торами нефти и газа являются пачки пород, представленные пе­реслаиванием песчаных разностей, мощностью до первых десят­ ков метров, с глинистыми и алеврито-глинистыми разностями. Открытая пористость песчаников составляет 20-25 %, а прони­ цаемость - 500-600 мДарси.

Пильтун-Астохское нефтегазоконденсатное месторожде­ ние расположено на северо-восточном шельфе о. Сахалина в 67км к ЮВ от г. Оха и в 17 км от берега. Открыто в 1986 г., по запасам

относится к категории крупных. Приурочено к Одоптинской ан­ тиклинальной зоне. Месторождение контролируется крупной ан­ тиклинальной складкой, осложненной тремя куполами - Пильтун- ским, Южно-Пильтунским и Астохским. Амплитуда каждого - от 100 до 200 м. Антиклиналь осложнена сбросами амплитудой 20-40 м, которые разделяют структуру на ряд блоков и контролируют рас­ пространение залежей по площади. Углы падения слоев на запад­ ном крыле 10-12°, на восточном - 8-10°. Нефтегазоносны терри- генные отложения нижненутовской подсвиты нижнего миоцена. До­ казана продуктивность 13 пластов. Глубина кровли верхнего 1300м, нижнего - 2334 м. Пористость от 22 до 24%, t - 50,5- 73°С. Плот­ ность нефти 0,874-0,876г/см 3 , вязкость 0,11-0,5МПа-с, содержа­ ние серы 0,12-0,27%, парафина 0,21-2,56%, смол и асфальтенов 2,5-4,3 %. Плотность газа по воздуху 0,604-0,638; газ содержит ме­ тана 94,11-91,75 %, углекислого газа 0,52 %, азота 0,28-0,84 %.

Аркутун-Дагинское нефтегазокондепсатное месторожде­ ние расположено на северо-восточном шельфе о. Сахалина в 123км восточно-юго-восточнее от г. Оха, в 26 км от береговой линии. При­ урочено к Одоптинской антиклинальной зоне. Открыто в 1986 г., по запасам относится к категории средних. Залежи контролиру­ ются тремя антиклинальными складками - Аркутунской, Дагинс- кой иАйяшской. Размеры общей структуры 56x10км (покровлениж- ненутовскогоподгоризонта), амплитуда - до 500 м. Нефтегазонос­ ны терригенные отложения нижненутовского подгоризонта ниж­него миоцена (10 пластов); глубина кровли верхнего - 1700 м, ниж­ него - 2300 м. Пористость коллекторов в среднем 23%, t - om 60 go 71 °. Плотность нефти 0,824-0,844 г/см 3 , вязкость 0,41-0,5 МПа-с, содержание серы 0,18-0,38 %, парафина 0,15-2,59 %, смол и асфаль­ тенов 2,2-5,73 %. Плотность газа по воздуху 0,614-0,660. Конден- сатный фактор - 108,5. Газ содержит метана 94,44-90,85 %, угле­ кислого газа 0,23-1,03 %, азота 0,30-0,35 %.

Одопту-Море нефтегазоконденсатное месторождение расположено на северо-восточном шельфе о. Сахалина в 6-8 км от берега и 40-50 км к югу от г. Оха. Открыто в 1977г. Приурочено к Одоптинской антиклинальной зоне. По кровле нутовской свиты (N 1 nt ) размеры 6,5x32 км, амплитуда 200 м. Свод структуры ослож­ нен тремя куполами - северным, центральным и южным, размеры от 6 до 12 км. Западное крыло складки более крутое, чем восточ­ ное, углы падения слоев 5-17° и 3-7°. Разрывных нарушений не ус­ тановлено. Нефтегазоносные отложения нижненутовской под свиты нижнего миоцена представлены песчаниками, алевролита­ ми и аргиллитами. Установлено 13 продуктивных пластов-коллек­ торов. Глубина кровли верхнего пласта 1250м, нижнего 1972м. По­ ристость коллекторов от 19 до 25%, проницаемость в среднем 0,56 мкм 2 . Начальные пластовые давления 17,1-21,3 МПа, 162-72°С. Начальные дебиты нефти от 10,5 до 90 т/сут. Плотность нефти 0,839-0,871 г/см- 3 , вязкость 0,74-1,18МПа-с, содержание серы 0,2- 0,4%, парафина 0,5-1,3%, смол и асфальтенов 3,91-8,8%. Плот­ность газа по воздуху 0,584-0,636. Газ содержит метана 94,85- 96,4 %, углекислого газа 0,12%, азота 0,51-1,10 %.

Лунское-Море нефтегазоконденсатное месторождение расположено на северо-восточном шельфе о. Сахалина в 335 км к югу от г. Охи и 12-15 км от берега. В тектоническом отношении приурочено к Ныйской антиклинальной зоне. Открыто в 1984 г. Контролируется крупной брахиантиклинальной складкой разме­ ром 8,5x26 км (по кровле дагинской свиты) и амплитудой 600 м. Структура пересечена серией сбросо-сдвиговых нарушений с ам­ плитудой смещения от нескольких до 200 м. Углы падения слоев на крыльях структуры 8-10°. По верхним горизонтам складка выпо-лаживается, углы падения уменьшаются до 3-4°. Нефтегазонос­ ный комплекс приурочен к дагинской свите нижнего-среднего ми­ оцена, сложенной терригенными песчаниками, алевролитами и ар­ гиллитами. На месторождении установлена продуктивность 15 пластов-коллекторов. Это газоконденсатные залежи, нефтяные оторочки открыты в 4 из них. Кровля верхнего пласта на глубине 2082 м, нижнего - 2843 м. Пористость коллекторов от 24 до 26%, t - от 72 до 82°С. Плотность нефти 0,816 г/см 3 , вязкость 0,25- 0,7 МПа-с, содержание серы 0,13%, парафина 1,44-1,79%, смол и асфальтенов 1,2-1,45%. Плотность газа 0,621-0,630. Газ содер­ жит метана 93-92,06 %, углекислого газа 0,28 %, азота 0,65-1,14 %.

Кирийское газоконденсатное месторождение расположено на северо-восточном, шельфе о. Сахалина в 65 км к востоку от пос. Ноглики и 20 км от берега. В тектоническом отношении оно при­ урочено к Ныйской антиклинальной зоне. Открыто в 1992 г., по запасам относится к категории средних. Залежи газоконденсата ограничены антиклинальной структурой, представляющей собой вытянутую складку, осложненную поперечным сбросом небольшой амплитуды. Размеры складки 10x1,5км (покровле дагинскогогори­ зонта), амплитуда 200 м. Газоносны терригенные отложения да- гинского горизонта нижнего-среднего миоцена, в которых откры mo 4 газоконденсатных пласта. По данным, испытаний предпола­ гается, что в верхних трех пластах существует одна массивная залежь с единым газоводяным контактом. Глубина кровли верхне­ го пласта 2820 м, нижнего - 2968 м. Пористость коллекторов - 18-22%.

Чайво-Море нефтегазоконденсалшое месторождение рас­ положено на северо-восточном шельфе о. Сахалина в 120 км к юго- востоку от г. Оха и в 12 км от берега. Приурочено к безымянной седловине между Чайвинской и Пильтунской синклинальными зо­ нами. Открыто в 1979г. Залежи контролируются брахиантикли-нальной складкой простого строения размером 4x8 км по кровле нижненутовского подгоризонта и амплитудой до 150м. Ось склад­ ки ориентирована на северо-запад. Нефтегазоносные нижнемио­ ценовые отложения нижненутовского подгоризонта представле­ ны песчаниками, алевролитами и аргиллитами. Установлена про­ дуктивность 10 пластов-коллекторов. Глубина залегания верхнего пласта 1175 м, нижнего 2787 м. Пористость 19-25%, проницае­ мость 0,163-0,458 мкм 2 (68-87°С.Плотностънефти 0,832-0,913 г/ см 3 , вязкость 0,640-0,642 МПа-с, содержание серы 0,1-0,4%, па­ рафина 0,5-1,3%, смол и асфальтенов 5-13,1%. Плотность газа по воздуху 0,624-0,673. Газ содержит метана 93,6-93,8 %, углекис­ лого газа 0,3-0,52 %, азота 0,3-0,6 %.

ЮЖНО-САХАЛИНСКАЯ НГО площадью 47,5 тыс. км 2 (в том числе перспективная площадь суши - 4 тыс. км 2) отличается зна­чительно меньшими толщинами неогеновых отложений и сокра­щенным разрезом палеогена. Выделяется Макаровский прогиб с мощностью кайнозойского осадочного чехла 6 - 7 км и располо­женный к востоку Владимирский прогиб с мощностью осадочных отложений до 3 - 4 км. Ресурсы углеводородов связаны, в основ­ном, с окобыкайско-нутовским нефтегазоносным комплексом. От­крыты три небольших месторождения газа: Восточно-Луговское, Южно-Луговское и Золоторыбинское. Общий потенциал НГО оце­нивается невысоко.

ЗАПАДНО-САХАЛИНСКАЯ НГО площадью 135 тыс. км 2 в сво­ей субаквальной части приурочена к акватории Татарского про­лива и смежных районов Японского моря. Перспективная площадь акватории в пределах шельфа о. Сахалин составляет 23,6 тыс;, км 2 . Высокая степень эродированности отложений на островной час­ти области, неблагоприятный для аккумуляции лито-фациальный состав неогеновых отложений и на большей части площади области высокая степень литофикации палеогеновых и верхнемеловых отложений, значительно снижает перспективы нефтегазоносности области.

Крупнейшей геологической структурой Западно-Сахалинской НГО является - Западно-Сахалинский прогиб, охватывающий акваторию Татарского пролива (северные широты г. Чехова), Амурского лимана и смежные районы Северо-Западного Саха­лина. В осадочном чехле мощностью до 4 - 5 км выделяются верхне-меловой, палеоген-среднемиоценовый и верхнемиоценовый комплексы, отличающиеся смещением структурных планов. Бо­лее сложно устроена южная часть Западно-Сахалинского проги­ба, где на восточном крыле развиты крупные, довольно крутые асимметричные брахиантиклинали, нарушенные значительными продольными разрывами (Красногорская, Старомаячнинская).

Большая часть начальных суммарных ресурсов УВ отнесена к Нутовско-Окобыкайскому НГК и уйнинско-дагинскому комплек­сам. Около 74% начальных суммарных ресурсов составляют нефть и конденсат. В целом на долю Западно-Сахалинской ПНГО прихо­дится лишь около 8% начальных суммарных ресурсов УВ Сахалин­ского шельфа. В пределах ПНГО основные УВ приурочены к глу­бинам до 3 км.

На западном шельфе Сахалина в отложениях окобыкайско-нутовского комплекса (маруямская свита) открыто Изыльметьевское газовое месторождение.

ЗАПАДНО-КАМЧАТСКАЯ НГО площадью 70 тыс. км 2 занима­ет прогибы западного побережья п-ва Камчатка и прилегающей акватории (Западно-Камчатский, Охотско-Колпаковский, Воям-польский и др.). Крупнейшая тектоническая структура области является Западно-Камчатский синклинорный прогиб с мощностью осадочного чехла 6,5 км. Основная часть разреза представлена па­леоген-неогеновыми терригенными и кремнисто-глинистыми от­ложениями, среди которых развиты пласты с удовлетворительны­ми емкостно-фильтрационными свойствами и изолирующие дос­таточно мощные пачки. Нижнюю часть осадочного чехла слагают песчано-глинистые верхнемеловые отложения.

Перспективы нефтегазоносности связываются (в порядке убывания) с неогеновыми, палеогеновыми и верхнемеловыми комплексами. Вторая крупная отрицательная структура Западно-Камчатской НГО - Охотско-Колпаковский тыловой прогиб - имеет осадочный чехол мощностью до 8 км. Он практически целиком представлен неогеновыми отложениями, в верхней части разреза которых имеются мощные пласты хороших поровых кол­лекторов.

На суше открыто четыре небольших по запасам газоконден-сатных месторождения (Кшукское и др.) на глубине 1200 - 1600 м, приуроченных к нижнемиоценовому и средне-верхнемиоценово­му комплексам; газопроявления отмечены в отложениях эоцена и верхнего мела.

Кшукское газовое месторождение - первое месторождение, открытое на Камчатке, расположено на ее юго-западном, побере­ жье и приурочено к антиклинальной складке размером 8x5 км, с амплитудой около 100 м. Продуктивны вулканомиктовые песча­ ники кавранской серии (верхний миоцен-плиоцен), обладающие от­ крытой пористостью 12-32 % и проницаемостью 0,02-0,15мкм 2 и более. Глубина залегания продуктивного горизонта 1149-1560 м. Дебиты скважин составляют от 70-207 тыс. м 3 /с на штуцере 12 мм, до 706 тыс. м 3 /с газа на штуцере 27 мм и 4,1 мУс газокон­ денсата.

В целом, по Западно-Камчатской НГО основная часть прогноз­ных ресурсов нефти и газа приурочена к неогеновым и палеоге­новым отложениям.

Ульянско-Мареканская, Северо-Охотская, Центрально-Охотская и Южно-Охотская перспективные нефтегазоносные области выделены в акватории Охотского моря и на прилегаю­щих участках суши по аналогии с областями доказанной нефте-газоносности. По геофизическим и геологическим данным в их пределах предполагаются крупные осадочные бассейны, выпол­ненные преимущественно терригенными, реже кремнисто- вул­каногенными породами суммарной толщиной 5000 - 8000 м (Го-лыгинский прогиб и др.) палеогенового, неогенового и четвертич­ного возрастов.

Месторождения Сахалина в основном приурочены к ловуш­кам структурного типа. Наиболее широко развиты месторожде­ния, связанные с антиклинальными складками с нарушенными сводами (Охинское, Узловое, Сабинское, Катанглинское и др.). Ограниченное распространение имеют месторождения связан­ные с антиклинальными и брахиантиклинальными складками с ненарушенными сводами (Прибрежное, Тунгорскоеидр.) и мес­торождения, приуроченные к моноклиналям (Паромайское, Се­верное Колендо). Большая часть залежей пластовые с эффективной мощностью 5 - 25 м, иногда до 50 - 60 м с открытой пористо­стью 13-20%.

Подавляющее большинство залежей осложнено разрывными нарушениями, литологическим выклиниванием, стратиграфичес­ким срезанием. Основные запасы нефти 84% приурочены к глу­бинам 0 - 2 км, газа - 1 - 3 км, газоконденсата (90%) - 2 - 3 км.

Перспективные территории Дальнего Востока

Орогенические области в пределах России изучены в отноше­нии нефтегазоносности крайне неравномерно и в целом слабее, чем платформенные области. Имеются крупные территории и участки шельфа, о перспективах которых на нефть и газ можно судить с большей или меньшей уверенностью на основании общегеологи­ческих соображений и аналогии с провинциями и областями, где нефтегазоносность доказана практическими результатами геолого­разведочных работ. На соверменной стадии изученности в качестве перспективных элементов нефтегазогеологического районирова­ния может быть выделен ряд самостоятельных (не входящих в про­винции или области) перспективных нефтегазоносных районов (Момо-Зырянский прогиб, группа дальневосточных впадин). Кро­ме того, известно несколько межгорных впадин (Кузнецкая, Северо- и Южно-Минусинская, Селенгинская, Байкальская, Тункинская, Баргузинская), которые уже вовлечены в сферу геологоразведоч­ных работ, но из-за неопределенности геологических материалов обоснованной количественной оценки не имеют.

Момо-Зырянский прогиб входит в состав Верхояно-Колымской складчатой области. Прогиб имеет перспективную площадь по мезо-кайнозойским отложениям около 50 тыс. км 2 . В разных рай­онах прогиба отмечались довольно обильные выходы углеводород­ных газов с высоким содержанием тяжелых гомологов, а также битумы в отдельных горизонтах юрского разреза. В последние годы пробурено несколько скважин, в одной из них (Индигирская пло­щадь) из отложений неогена получен слабый приток газа дебитом 1,7 тыс. м 3 /сут. Изученность прогиба остается крайне слабой, оцен­ка перспектив нефтегазоносности неопределенная.

Самостоятельный перспективный объект представляют впа­дины и прогибы на юге Дальнего Востока: Зее-Буреинская, Среднеамурская, Ханкайская и другие. Они находятся в области рас­пространения мезозойской складчатости, имеют мезо-кайнозой- ский осадочный чехол, включающий отложения континентально­го и морского генезиса. Впадины различны по строению, разме­рам, условиям формирования.

Интерес к южно-дальневосточным впадинам связан во мно­гом с тем, что в приграничных с Россией районах Китая и Монго­лии континентальные толщи характеризуются региональной неф-тегазоносностыо (впадина Сунляо и др.). В Зее-Буреинской, Сред-неамурской, Ханкайской, Верхнебуреинской впадинах уже про­ведены, хотя и в небольшом объеме, специальные работы нефтя­ного профиля, включая разведочное бурение.

ВЕРХНЕБУРЕИНСКИЙ ГАЗОНОСНЫЙ РАЙОН (площадь 10,5 тыс. км 2) расположен в пределах Хабаровского края и связан с ме­зозойской впадиной, входящей в систему Монголо-Охотского складчатого пояса (рис. 263).

О геологическом строении впадины известно, главным обра­зом, по работам, производимым в связи с изучением твердых (в первую очередь угля) полезных ископаемых. Специальные рабо­ты на нефть и газ проведены в небольшом объеме в последние годы; в результате открыто Адниканское газовое месторождение с за­пасами 2 млрд м 3 .

Потенциал нефтегазоносности Верхнебуреинской впадины оценивается в целом невысоко и связывается с мезозойскими от­ложениями, представленными двумя комплексами: юрским морс­ким терригенным толщиной до 3000 м и верхнеюрско-меловым кон­тинентальным терригенно-угленосным толщиной до 4000 м. На Адниканском месторождении продуктивны меловые (кындальская свита) песчаники, перекрытые алеврито-глинистыми породами; залежи, по-видимому, являются пластовыми, тектонически экрани­рованными. Прогнозные ресурсы углеводородов сосредоточены, в основном, в меловом комплексе (62%), остальные - в юрском (38%).

Один из интересных объектов поисков нефти и газа связан с впадинами Прибайкалья и Забайкалья - Тункинской, Гусиноостровской, Байкальской, Баргузинской и Селенгинской. Эти меж­горные впадины, входящие в состав Монголо-Охотской складча­той системы, морфологически образуют крупные грабены, выпол­ненные преимущественно пресноводными отложениями мезозоя, миоцена и плиоцена. В разные годы в них было пробурено несколь­ко скважин, не давших положительных результатов. Перспекти­вы этих впадин в настоящее время могут быть оценены только на предположительном качественном уровне.

Рис. 263. Верхнебуреинский нефтегазоносный бассейн :

1 - границы бассейна; 2 - изогипсы поверхности фундамента (палео­зоя); 3 - тектонические нарушения; 4 - выходы фундамента на поверх­ность; 5 - Адниканское газовое месторождение

Кузнецкая, Северо- и Южно-Минусинская впадины находят­ся на юге Западной Сибири в системе горных сооружений Куз­нецкого Алатау и Саян. Впадины имеют размеры от 10 до 50 тыс. км 2 , резко выражены в рельефе, имеют чехол терригенных и кар­бонатных пород палеозоя и мезо-кайнозоя толщиной до 5000 м. Начиная с 1940-х гг., во впадинах ведутся, хотя и с перерывами, буровые и геофизические работы, ориентированные преимуще­ственно на девонские и верхнепалеозойские отложения, в резуль­тате чего в них установлены прямые проявления нефти и газа.

Так, в Кузнецкой впадине притоки газа, использованные для местных нужд, были получены на Плотниковской, Борисовской, Абашевской и других площадях; на первой из них наблюдалось выделение светлой нефти.

В Минусинских впадинах небольшие притоки газа с дебитами 2 - 3 тыс. м"/сут были получены на Западно-Тагарской и ряде других площадей, а на Быстрянской площади в скв. 1 дебит газа составил примерно 180 тыс. м 3 /сут, но промышленный характер этого газового скопления бурением последующих разведочных скважин но подтвердился. На Алтайской, Сользаводской площа­дях были получены притоки нефти по 10 - 20 л/сут.

Несмотря на продолжительность изучения, достоверная оцен­ка перспектив нефтегазоносности рассмотренных впадин отсут­ствует. В свете новых геолого-геофизических данных, полученных в Минусинских впадинах в последние годы, предполагается боль­шая, чем ожидалась раньше, рольлитологических факторов в рас­пределении нефти и газа, что требует корректировки методики ведения поисково-разведочных работ.

Контрольные вопросы к главе 5

    Какие особенности геологического строения характерны для провинций складчатых территорий?

    Каково значение провинций складчатых территорий в со­временной добыче нефти и газа?

    В каких провинциях складчатых территорий отмечен гря­зевой вулканизм?

    Роль Закавказской провинции в становлении нефтегазовойпромышленности мира.

    Назовите нефтегазоносные комплексы Закавказской про­винции.

    Какие нефтегазовые месторождения Закавказской провин­ции открыты на Каспийском шельфе?

    Каковы перспективы нефтегазоносности Каспийского шельфа в Западно-Туркменской провинции?

    Назовите нефтегазоносные области, входящие в Тяньшань-Памирскую провинцию.

    Какова роль Сахалинской нефтегазоносной области в Охот­ской провинции?

    Перечислите нефтегазоносные комплексы Камчатской неф­тегазоносной области Охотской провинции.

Проявления и промышленные залежи нефти и газа известны в породах фундаментов и базальных горизонтов осадочных бассейнов США, Венесуэлы, Ливии, Марокко, Египта, Австрии, Югославии, Венгрии, стран СНГ, Китая и в недрах других государств.

Фундаменты тектонотипов платформенных областей, краевых и подвижных систем характеризуются разными по составу и возрасту комплексами пород. Углеводородные скпления выявлены в гнейсах, сланцах, кварцитах и прочих метаморфитах, вулканогенных образованиях и, конечно, в гранитоидах и корах их выветривания. Подсчитано, что к последним приурочено около 40% от числа залежей, открытых в породах фундаментов , а если учесть их объем, то с гранитоидами связано более 3/4 запасов углеводородов в фундаментах нефтегазогеологических объектов .

Когда рассматриваются вопросы нефтегазоносности пород фундамента, сопутствующих им кор выветривания и базальных горизонтов чехла, обычно основное внимание сосредотачивается на роли зон разломов в формировании коллекторов и залежей УВ . Приводятся примеры разных по строению месторождений нефти и газа, нефте- и битумопроявлений, выходов горючих газов так или иначе приуроченных к системам глубинных нарушений, закономерно делящих земную кору на разновеликие блоки. В современной геологической структуре планеты часть таких блоков лишена осадочного покрова и на дневной поверхности выступает в виде щитов и массивов, сложенных комплексами кристаллических пород, другая часть блоков перекрыта осадками разного состава, толщина которых изменяется в зависимости от условий их развития и гипсометрического положения, и на дневной поверхности проявляется в виде тектонических элементов различного масштаба и морфологии .

Активные гидротермальные и дегазационные процессы протекают в зонах разломов не только континентов, но и в рифтовых системах срединно-океанических хребтов, чаще всего лишенных осадочного слоя.

Таким образом, зоны глубинных разломов, особенно обновленные современными движениями, - “кровеносная система”, по которой происходит флюидо- и теплообмен в земной коре, способствующий генерации УВ и их последующему онтогенезу. С разломами во многом связаны процессы формирования зон нефтегазонакопления, резервуаров и залежей нефти и газа, а также пространственное размещение последних.

И.М. Шахновский, рассматривая условия нефтегазоносности пород фундамента, отмечает, что в блоках фундамента, перекрытых отложениями чехла, нефтегазоносность чаще всего приурочена к коре выветривания, мощность которой достигает 50-80 м, но обычно не превышает 10-15 м . Для образующихся здесь вторичных коллекторов характерны сложные причудливые очертания и резкая изменчивость свойств в пространстве. Для резервуаров, формирующихся в зонах разломов, характерна линейная форма. Соответственно коллекторы в корах выветривания подразделяются на площадные, линейные и смешанного типа. Автор приводит характеристики месторождений с залежами нефти и газа в различных по составу, мощности и глубине залегания корах выветривания молодых и древних фундаментов. Это месторождения, открытые в Центральном Техасе США (Орф и др.), Венесуэле (Ла-Пас, Мара), Алжире (Хасси-Мессауд), Казахстане (Оймаши) и другие.

К.Е. Веселов и И.Н. Михайлов приводят статистические данные о месторождениях нефти и газа, открытых в породах фундамента в Австралии, на островах Тихого океана, в Азии, Африке, Европе, Америке . Обычно наблюдается плановое соответствие нефтегазоносных площадей в фундаменте и в осадочном чехле; редко скопления УВ обнаруживаются только в фундаменте. Акцентируется внимание на теоретических аспектах поисков залежей нефти и газа на больших глубинах в породах фундамента (в фундаменте существуют развитые, постоянно обновляемые, горизонтальные и вертикальные системы трещин, которые в пределах платформ отражают их сложную многопорядковую разломно-трещинно-блоковую структуру). Образование последней объясняется с позиций тектоники глобального рифтогенеза. В этой концепции гармонично сочетаются фиксистские и мобилистские представления о тектогенезе, позволяющие обоснованно рассмотреть развитие земной коры и образование ее трещинно-блоковой делимости. Особое внимание уделяется трещинообразованию. В зависимости от масштабов его проявления системы трещин могут соединять не только разные горизонты осадочного чехла, но и проникать глубоко в породы фундамента, способствовать миграции флюидов и формированию залежей УВ в геологической среде, традиционно считавшейся неперспективной. Трещинно-блоковое строение коры приводит к тому, что в зависимости от местоположения одни и те же породы могут быть как монолитно-непроницаемыми, так и хорошими вторичными коллекторами, пористость которых определяется трещиноватостью и действием разных физико-химических процессов. Известные в породах фундамента месторождения нефти и газа - не случайность (хотя в подавляющем большинстве своем открыты они случайно!), а проявление определенной закономерности, позволяющей предполагать на больших глубинах огромные скопления УВ. Основными объектами поисков должны стать трещинно-разломно-блоковые структуры континентальной коры, которые должны иметь большие вертикальные и ограниченные горизонтальные размеры. Трещинообразование в твердых породах и на больших глубинах - широко распространенный геологический процесс, способствующий нефтегазонакоплению .

В.Л. Шустер приводит сведения (состав пород, запасы и дебит скважин, толщина нефтенасыщенной части разреза, коллекторские свойства) о некоторых нефтяных и газовых месторождениях, открытых в кристаллических породах на территории Ливии, Египта, Индии, Бразилии, Венесуэлы, США и Казахстана. Месторождения, как правило, многопластовые, залежи частично или полностью литологически и (или) тектонически экранированы, располагаются в нормально осадочных породах и в трещиноватых гнейсах, гранитах, гранодиоритах, гранофирах, порфиритах фундаментов разного возраста. Комплексы пород фундаментов Западно-Сибирской плиты, Сибирской платформы, на территории арктических и северо-восточных морей, Дальнего Востока могут быть новыми перспективными объектами поисков залежей нефти и газа.

Формирование скоплений УВ в пределах фундамента обязано взаимодействию двух встречных потоков: глубинных паров, газов и тепла, стремящихся снизу из недр земли и охлажденного органического минерального вещества, опускающегося сверху в недра. Миграции флюидов и возникновению термобарических условий для образования УВ способствуют зоны проницаемости, приуроченные к глубинным разломам. Разломы также контролируют образование разных структур и связанных с ними ловушек, преобразование плотных гранитоидов в трещиноватые, распространение коллекторов и покрышек. Эти требования отвечают условиям нефтегазонакопления как в кристаллических породах фундамента, так и в отложениях чехла. Генезис УВ для промышленного использования нефти и газа существенного значения не имеет .

Нефтяные месторождения, связанные с коллекторами в гранитоидах, известны в России, Казахстане, Ливии, Китае, Индии, США, Канаде. Подавляющее большинство их приурочено к зонам выветривания небольшой мощности.

На этом “фоне” показательны строение и условия нефтеносности месторождения Белый Тигр, расположенного в Меконгской (Кыулонгской) впадине на шельфе Южного Вьетнама . На месторождении изначально продуктивным считался кайнозойский осадочный чехол, в котором нефтеносными являются песчаники нижнего олигоцена и нижнего миоцена, пока в 1988 г. в “свежих” мезозойских гранитоидах фундамента не была открыта уникальная нефтяная залежь. Здесь сосредоточено до 70% начальных геологических запасов категорий С 1 +С 2 . Исключителен объем нефтенасыщенных гранитоидов - высота залежи свыше 1300 м и высоки значения фильтрационных свойств пород, что позволяет получать из них более 90% общей добычи нефти. И это при том, что скважинами, пробуренными на глубины свыше 5000 м, ВНК (в общепринятом толковании) так и не установлен!

Структура месторождения Белый Тигр представляет собой горстообразное поднятие, разновеликие блоки которого образовались в период активизации палеогеновых движений вдоль конседиментационных сбросов северо-восточного простирания. Амплитуда их по поверхности фундамента 1500-1600 м и более, в чехле она понижается и в отложениях верхнего олигоцена уже не превышает 400-500 м; смещения по другим сбросам редко достигают 150-200 м. По кровле фундамента поднятие четко делится на три основных части блока, представленных Южным, Центральным (наиболее приподнятым) и Северным сводами, которым, в свою очередь, свойственна более дробная делимость. Размерность поднятия: длина - несколько десятков километров, ширина и высота - более 1.5 км, отметка замка - 4650 м (рис. 51) .

Рис. 51. Расположение основных месторождений шельфа Южного Вьетнама и

структурно-тектоническая схема поверхности фундамента месторождения Белый Тигр

1 - границы тектонических структур; 2 - месторождения; 3 - основные разломы; 4 – изогипсы поверхно­сти фундамента, км; 5 - скважины. Месторождения: БТ - Белый Тигр, ДХ - Дайхунг, ДР - Дракон, ТД - Тамдао.

Мощность кайнозойского чехла изменяется от 3000 м на поднятых блоках и до 8000 м в пределах опущенных блоков. Фундамент сложен гранитами, гранодиоритами, кварцевыми диоритами; коэффициенты монопородности блоков - 0.73; 0.57 и 0.8. Характерны дайки и лавовые покровы (диабазы, базальты и т.п.) над фундаментом.

Емкостные и фильтрационные свойства обусловлены вторичной пустотностью трещинного, каверно-трещинного и блокового типов; на приточность флюида наиболее сильно влияет трещиноватость пород.

Нефтяная залежь “разбита” по блокам фундамента на разных гипсометрических уровнях и экранируется верхне- и нижнеолигоценовыми глинисто-аргиллитовыми породами мощностью от 5-20 до 40-60 м, на участках, где покрышка маломощна, притоки нефти обычно невелики или отсутствуют. Здесь, возможно, происходит переток УВ из пород фундамента в отложения нижнего олигоцена. Максимальная глубина доказанного нефтенасыщения - 4350 м, предполагаемого - 4650 м .

Нефтеносность пород фундамента установлена и на других структурах Меконгской впадины - блоки Дракон, Тамдао, Баден, Биви, крупные запасы прогнозируются на месторождении Дайхунг в Южно-Коншонской впадине.

О.А. Шнип , рассмотрев условия нефтегазоносности фундаментов, предлагает геологические критерии оценки перспектив пород фундамента на нефть и газ:

1. Гранитоиды – наиболее вероятная группа пород фундамента, способная аккумулировать и сохранять промышленные скопления углеводородов.

2. Пути миграции флюидов связаны с трещиновато-разломными зонами и с другими системами пустотного пространства, которые могут возникать в фундаменте.

3. Коллекторы в фундаменте образуются под влиянием разрывной тектоники и гипергенных воздействий, которые способствуют образованию пустотного пространства в любых породах.

4. Покрышками залежей нефти и газа в фундаменте служат горизонты непроницаемых пород осадочного чехла. Изолирующими комплексами могут быть и непроницаемые породы фундамента.

5. Приуроченность промышленных скоплений нефти и газа к фундаментам осадочных бассейнов.

6. Размещение скоплений углеводородов в выступах фундамента, возвышающихся над его кровлей на десяти, сотни и более метров.

7. Углеводородные включения в минералах гранитоидов.

8. Глубины залегания пород фундамента от 3.5 до 4.3 км.

9. Наличие зон нефтегазообразования на доступном для миграции УВ расстояния.

В.Л. Шустер, Ю.Г. Такаев , охарактеризовав строение месторождений нефти и газа в кристаллических образованиях Америки, Африки, Европы, Австралии, Азии, Китая, Индонезии и Вьетнама, также останавливаются на проблеме критериев оценки нефтегазоносности. Ссылаясь на известных авторов, давно занимающихся вопросами нефтегазоносности пород фундаментов и древних толщ. (Е.Р. Алиева и др., 1987; Е.В. Кучерук, 1991; Б.П. Кабышев, 1991; Р. Шерифф, 1980, 1987; и др.), они указывают следующие показатели нефтегазоносности фундаментов:

Залегание скоплений углеводородов в фундаментах ниже региональных поверхностей несогласия;

Резкая расчлененность рельефа фундамента;

Глубина залегания или нахождения скоплений УВ в фундаменте не может превышать глубины подошвы осадочного слоя в депрессиях бассейнов;

Структурный фактор (наиболее перспективны валы и выступы фундамента), в т.ч. наличие зон разломов;

Гидрогеологические условия сохранности скоплений нефти и газа;

Наличие пустотности в кристаллических породах.

Анализ предложенных критериев и показателей оценки нефтегазоносности пород фундаментов разных тектонотипов показывает, что большая часть их принципиально не отличается от признаков и условий нефтегазоносности и набора тектонических, литологических, гидрогеологических и геохимических показателей и критериев нефтегазонакопления и сохранности залежей углеводородов, обычно применяемых для оценки перспектив осадочных басейнов на нефть и газ. И в фундаменте, и в чехле в конечном счете главное – коллектор и покрышка! В формировании ловушек углеводородов важнейшую роль играют разломно-блоковые структуры, которые обусловили эрозионно-тектонический рельеф и региональные поверхности несогласия. И, кроме того, разломно-блоковые (межблоковые!) системы безусловно контролируют размещение в земной коре львиной доли месторождений нефти и газа.

Тектонический фактор в совокупности процессов, определяющих геологическую среду и ее нефтегазоносность, является ведущим. Именно тектогенез обусловливает развитие различных по масштабу, строению и возрасту осадочных нефтегазоносных бассейнов и их зональное распределение в земной коре . Его роль проявляется на всех уровнях прогноза и поиска месторождений нефти и газа. При этом тектонический режим, формируя (слоисто-) блоковую структуру бассейна, контролирует образование и размещение УВ в разрезе и по площади территории. Интенсивность и направленность структуроформирующих движений прямо или опосредованно воздействуют на обстановку и масштабы осадконакопления, степень изменения пород, тип и характер преобразования ОВ, области питания и разгрузки пластовых вод, изменение во времени геотермического градиента, региональные направления перетока флюидов и на другие процессы, сопровождающие или определяющие нефтегазоносность.

Установлен факт блокового контроля над формированием и размещением многих полезных ископаемых. Вполне очевидно, что глубинные нарушения, составляющие основу межблоковых (граничных) систем, представляют собой зоны подвижного сочленения разделяемых ими блоков и обусловливают определенную их автономность и специфику нефтегазоносности.

Как правило, блоковые и межблоковые системы более контрастно проявляются в структуре фундамента и нижней части осадочного чехла, чем в его верхней. На дневной поверхности они часто отражены складчатыми (пликативными) структурными формами (валы, прогибы и т.п.), нередко контролируемыми конседиментационными разломами.

В этом смысле показательно, например, строение восточной части Русской платформы, где на территории Башкортостана выделены регионально протяженные конседиментационные грабенообразные прогибы, контролирующие линейно выраженные зоны нефтегазонакопления (Е.В.Лозин, 1994) (рис. 52) .

Рис. 52. Карта изопахит кыновско-пашийской толщи осадков

1 - изопахиты, м; 2 - западная граница складчатого Урала; 3,4- границы выклинивания: пашийских (3) и кыновских (4) отложений; 5,6- зоны дизъюнктивов (ГП): установленных, предполагаемых; 7 - администра­тивная граница

Прослеживается геохронологическую последовательность и связь механизма образования грабенообразных прогибов с древней рифтовой структурой рифея-венда и указываются структурные предпосылки формирования возможных зон нефтегазонакопления, обусловленные блоковыми движениями. Эти предпосылки вполне могут быть применимы и к другим платформам, где предполагается нефтегазоносность древних толщ (рис. 53) .

Рис. 53, Структурно-тектоническая схема эйфельско-раннефранского подэтажа

Проблема нефтегазоносности древних толщ Восточно-Европейской (Русской) платформы связывается со структурно-тектоническими условиями, стратиграфией венд-кембрийского комплекса пород, более изученного, чем рифейские отложения, признаками нефтегазоносности (притоки докембрийских нефтей, полученные в скважинах Даниловской площади в центральной части Московской синеклизы, на территории Удмуртии, Башкортостана, Кировской и Пермской областей - площади Очер, Сива, Соколовская и др.), нефтематеринскими породами (нефтематеринский потенциал и время его реализации; черные аргиллиты - “вендский доманик” и темноцветные глины, обогащенные битумоидами, Московской синеклизы), коллекторами и покрышками (соответственно песчаные и глинистые пачки венд-кембрийского комплекса в Московской и Мезенской синеклизах; наиболее регионально выдержанная покрышка - глинистые отложения редкинской (усть-пинежской) свиты), ловушками (структурная и литологическая дифференциация древних толщ предполагает формирование ловушек разных типов). Тектонотипом ловушек, связанных с блоковым строением Камско-Бельского, Среднерусского, Московского и других авлакогенов, могут быть ловушки Юрубчено-Тохомской зоны нефтегазонакопления в рифейских и вендских отложениях Сибирской платформы . Анализ предпосылок нефтегазоносности древних толщ Восточно-Европейской (Русской) платформы указывает на наличие всех критериев вероятной продуктивности, присущих нефтегазоносным бассейнам; важно лишь найти зоны их благоприятного сочетания .

Тимано-Печорская НГП характеризуется в плане чередованием дислоцированных мобильных зон и относительно просто построенных стабильных областей. Структуры осадочного чехла повторяют вверх по разрезу в сглаженной форме основные черты строения фундамента, расчлененного глубинными разломами на блоки. Различные конфигурация, размеры и ориентировка поднятых и сопряженных с ними опущенных блоков обусловили глыбово-блоковое строение в стабильных областях и линейно-блоковое в мобильных зонах. Стабильные геоблоки в большей степени нефтеносные, мобильные - газоносные (рис.54)].

Рис.54. Тимано-Печорская нефтегазоносная провинция .

1-4 - границы структур: 1 - крупнейших, 2 - крупных, 3 - средних, 4 - крупные структуры.

А - Тиманская гряда: I - Восточно-Тиманский мегавал, II - Цилемско-Четласский мегавал, III - Канино-Северо-Тиманский мегавал. Б - Печорская синеклиза: IV - Омра-Лузская седловина, V - Ижемская впадина, VI - Нерицкая монокли­наль, VII - Малоземельско-Колгуевская моноклиналь, VIII - Печоро-Кожвинский мегавал, IX - Денисовский прогиб, X - Колвинский мегавал, XII - Лодминская седловина, XIII - Варандей-Адзьвинская структурная зона. В - Предуральский краевой прогиб: XIV - Полюдовское поднятие, XV - Верхнепечорская впадина, XVI - Средне-Печорское поднятие, XVII - Большесынинская впадина, XVIII - поднятие Чернышева, XIX - Косью-Роговская впадина, XX - поднятие Чернова, XXI - Коротаихинская впадина, XXII - Пайхойское поднятие. Г - Уральский кряж.

Несомненно тектоническая активность блоков влияет на их нефтегазоносность. И это, конечно, обусловлено двумя главными видами показателей, группы признаков которых характеризуют как структуру собственно блоков, так и перекрывающих их отложений чехла, в которых находятся нефтегазоносные объекты - НГК разной масштабности.

К тектонически активным - мобильным блокам приурочено более половины (56%) выявленных месторождений и залежей (65%) . С ними связана значительная часть крупных и крупнейших по геологическим запасам месторождений. Большая часть потенциальных ресурсов УВ: нефти до 70%, газа около 90% - сосредоточена в пределах мобильных геоблоков, где концентрация в среднем в 3-3.5 раза выше, чем в стабильных.

Мобильные мегаблоки характеризуются набором общих черт нефтегазоносности, хотя при детальном сравнении их между собой отмечаются определенные отклонения. Показательным в качестве примера является Предуральский мегаблок, отличающийся аномальным строением земной коры. В осадочном чехле, перекрывающим мегаблок, концентрируется более половины прогнозных ресурсов газа НГП. Эта величина может быть обусловлена сравнительной молодостью высокоинтенсивных ловушек и приуроченных к ним залежей, что в свою очередь объясняется своеобразным геодинамическим режимом мегаблока в заключительные стадии развития Тимано-Печорского бассейна .

В Тимано-Печорском бассейны границы ОНГО в стратиграфическом диапазоне нижнего силура - нижней перми и (или) резкой смены их продуктивности в целом также совпадают с границами крупных долгоживущих блоков земной коры. При этом наибольшая продуктивность характеризует блоки, испытавшие в геологической истории длительное устойчивое погружение - вне зависимости от их последующей инверсии - Предуральский прогиб, Печоро-Колвинский авлакоген, Варандей-Адзъвинская зона (в последней продуктивность ОНГО несколько меньше в следствие менее последовательного, менее устойчивого погружения, иногда сменявшегося подъемом). Размещение ЗНГН в бассейне также в основном подчиняется двум направлениям, ограничивающим основные блоки: субтиманскому и субуральскому; при этом ЗНГН, как правило, отвечают либо самым крупным линейным блокам, после длительного погружения претерпевшим частичную инверсию (Колвинский мегавал, Лайский вал и другие), либо границам крупных линейных блоков (Шапкино-Юряхский вал, вал Сорокина и другие).

В результате анализа распределения прогнозных ресурсов нефти и газа установлены корреляционные зависимости между строением блоков консолидированной земной коры и структурой перекрывающих их образований осадочного чехла. При прогнозе нефтегазоносности на региональном, зональном и, частично, на локальном уровнях должно учитываться не только строение собственно осадочного тела, слагающего НГБ и его отдельные части, но и всей толщи земной коры и происходящих в ней процессов, в той или иной степени влияющих на характер нефтегазоносности осадочной оболочки и стадий онтогенеза УВ, происходящих в ней .

В Прикаспийской впадине на всех этапах ее развития прослеживаются дискретные дифференцированные движения блоков фундамента, отраженные в осадочном чехле. Унаследованность древнего структурного плана доказана бурением на таких поднятиях как Тенгиз и Карачаганак, приуроченных к приподнятым блокам фундамента. К пограничным зонам блоков впадины могут быть приурочены разнотипные тектонически экранированные ловушки, а также надразломные и приразломные локальные поднятия .

Обобщение материалов, накопленных украинскими геологами в результате поисков нефти и газа в Днепрово-Донецкой впадине, Причерноморье, Крыму, Волыно-Подолии и других районах Украины, позволило им охарактеризовать роль разломной тектоники в формировании нефтегазоносных провинций (НГП) и областей (НГО), размещении зон нефтегазонакопления и месторождений УВ . Влияние блоковой составляющей структуры бассейна отражено в его нефтегазогеологическом районировании (рис. 56).

Интерес к нефтегазоносности кристаллического фундамента, а, соответственно и к блоковому его строению значительно возрос в связи с обнаружением «… сначала на площади Ахтырского нефтепромыслового района в Сумской области (скв. Хухринская – 1), а затем на участке Юльевской зоны в Харбковской оюласти в нескольких скважинах были обнаружены промышленные скопления нефти и газа, сосредоточенные непосредственно в верхних частях кристаллического фундамента на глубине более 250 м от его поверхности» . Примечателен вывод об участках Днепрово-Донецкой впадины, наиболее благоприятных для концентрации нефти и газа, тяготеющих к зонам долго живущих региональных разломов в основном северо-западного (305 0 -315 0) и северо-восточного (35 0 -45 0) направлений и к узлам их пересечений .

Рис. 55. Схема нефтегеологического районирования северного борта ДДА по осадочному чехлу и верхней трещиноватой зоне пород фундамента (по И.И. Чебаненко, В.Г.Демьянчуку,В.В. Кроту и др. (по данным с упрощениями автора)).

1 - граница Днепровско-Донецкой газонефтеносной области по осадочному чехлу (по изогипсе - 1 км по поверхности фундамента); 2 - северное краевое нарушение; 3 - тектонические нарушения (а - основные в по­родах фундамента, 6 - второстепенные); месторождения: 4 - нефтяные, 5 - нефтегазовые, 6 - газовые, 7 - пара­метрическая Сотниковская скв. 499.

Анализ данных ГСЗ по Западно-Сибирской плите и степени консолидации земной коры в ее пределах позволяет выделить блоки, разграниченные глубинными разломами, выявить их связь с верхней мантией, рассмотреть строение осадочного чехла и распределение месторождений нефти и газа в зависимости от типа блока. Большинство месторождений приурочено к блокам, которым соответствуют останцы древних складчатых комплексов, минимальное количество месторождений расположено в пределах блоков, соответствующих положению грабен-рифтов и зонам глубокой тектонической переработки . Наиболее отчетливо блоковое строение выражено в домезозойском основании плиты. Типичным примером блоковой структуры является Малоичский палеозойский выступ, расположенный в Нюрольской впадине . Он состоит из различных по величине блоков, разделенных разломами. Скважины, давшие притоки и фонтаны нефти, расположены в разных блоках, в основном наиболее приподнятых. Скважины, пробуренные непосредственно в зонах разломов, притоков обычно не дают. Рассматривая другие подобные примеры, можно сделать вывод - “... разломы не только способствуют проникновению УВ в породы-коллекторы, но и могут быть причиной расформирования залежей при последующих тектонических подвижках” . Обобщение материалов по Западной Сибири в целом показало, что для формирования скоплений УВ в осадочных отложениях земной коры имеют значение преимущественно длительно развивавшиеся “открытые” глубинные разломы. “Залеченные” разломы, заполненные минеральным веществом, не могли быть путями вертикального перемещения УВ.

Блоковая делимость литосферы – главный контролирующий фактор размещения полезных ископаемых в земной коре. Вполне вероятно и то, что блоковая делимость литосферы определяет генетические условия образования и формирования минеральных и энергетических полезных ископаемых .

17. Нетрадиционные виды и источники углеводородного сырья и

проблемы их освоения

Ресурсы УВ в недрах огромны, но лишь малая их часть, относимая к традиционным, изучается. За пределами исследований, поиска и освоения остается резерв ресурсов нетрадиционного УВ сырья, по объему на 2-3 порядка превышающий традиционный, но все еще мало изученный. Так, ресурсы метана в гидратном состоянии, рассеянного только в донных отложениях Мирового Океана и шельфов на два порядка (в нефтяном эквиваленте) превышают традиционные ресурсы УВ. Около 8-10 4 млрд. т н. э. метана содержатся в водорастворенных газах подземной гидросферы, причем только в зоне учета ресурсов УВ - до глубин 7 км. Огромны объемы практически разведанных ресурсов нефтяных песков - до 800 млрд. т н. э. в отдельных регионах мира - Канада, Венесуэла, США и другие .

В отличие от подвижной в недрах, традиционной части ресурсов нефти и газа, извлекаемых современными технологиями, нетрадиционные ресурсы плохо подвижны или неподвижны в пластовых условиях недр. Для их освоения нужны новые технологии и технические средства, увеличивающие себестоимость их поиска, добычи, транспорта, переработки и утилизации. Не все виды нетрадиционного сырья ныне технологически и экономически доступны к промышленному освоению, но в энергодефицитных регионах, а также в бассейнах с истощенными добычей запасами и развитой инфраструктурой отдельные виды нетрадиционного сырья могут стать основой современного эффективного топливно-энергетического обеспечения.

Основной прирост традиционных запасов нефти и газа в мире и, особенно, в России идет ныне на территориях с экстремальными условиями освоения - Арктика, шельфы, удаленные от потребителей географо-климатически неблагоприятные регионы и другое. Затраты на их освоение столь велики, что, в период перехода на новые сырьевые базы, освоение нетрадиционных резервов сырья, окажется не только неизбежным, но и конкурентноспособным .

Важность всестороннего и своевременного изучения нетрадиционных ресурсов УВ особенно очевидна, если учесть, что более половины всех учтенных, в качестве традиционных, запасов нефти в России, представлены их нетрадиционными видами и источниками. Следовательно, нельзя считать корректным тот уровень обеспеченности запасами нефтедобычи в России, который ныне рассматривается на основе суммы традиционных и нетрадиционных запасов, поскольку значительные их объемы не отвечают условиям рентабельного освоения.

Любая нефтегазоносная провинция в ходе освоения подходит к стадии истощения. Своевременная подготовка к разработке дополнительных резервов в виде нетрадиционных источников УВ позволит длительное время поддерживать уровень добычи с рентабельными экономическими показателями. В настоящее время степень выработанности большинства крупных разрабатываемых месторождений в России, в основном, превышает 60% и, примерно 43% общей добычи осуществляется из крупных месторождений со степенью выработанности 60-95%. Современная добыча нефти в России ведется в регионах с высокой степенью истощения запасов. Переход на освоение новых сырьевых баз в арктических и восточных акваториях, требует резерва времени и сверхнормативных капитальных затрат, к которым экономика России ныне не готова. Одновременно во всех НГБ, даже с глубоко истощенными запасами, имеются значительные резервы нетрадиционных ресурсов УВ, рациональное и своевременное освоение которых позволит поддержать уровень добычи. Достигнутый в мире прогресс в технологиях добычи нефтегазового сырья допускает освоение нетрадиционных видов и источников УВ, со стоимостью эквивалентной стоимости сырья на мировом рынке .

Исследования ВНИГРИ показали значительные резервы ресурсов нефти и газа в нетрадиционных ис­точниках и резервуарах. Их изучение и освоение позволит заполнить ту неизбежную паузу в обеспечении нефте-, а затем и газодобычи, которая неизбежно возникнет до ввода в освоение новых сырьевых баз в экстре­мальных по условиям освоения регионах. В перспективе нетрадиционные источники и виды УВ станут основой их сырьевой базы (см. «Сланцевый газ»). В настоящее время объемы добычи нетрадиционных УВ не превышают 10% от их общемировой добычи. Прогнозируется, что к 2060 г. они будут обеспечивать более поло­вины всей добычи УВ .

В настоящее время первоочередными для освоения представляются следующие виды и источники нетрадиционного углеводородного сырья:

1. Тяжелые нефти;

2.Горючие «черные» сланцы;

3.Низкопроницаемые продуктивные коллекторы и сложные нетрадиционные резервуары;

Российская Федерация по праву считается одним из ведущих мировых экспортёров нефти.

Ежегодно в стране добывается порядка 505 000 000 тонн «чёрного золота».

На сегодняшний день разрабатываемые по объёмам разведанных природных запасов нефти вывели Россию на 7-е месте в мире.

Основные месторождения- Это Саматлорское, Ромашкинское, Приобское, Лянторское, Фёдоровское, Мамонтовское

Самотлорское

Самое крупное месторождение нефти в России находится на 6-м месте в мировом списке. Долгое время его местоположение считалось государственной тайной.

В настоящий момент эта информация больше не является секретной. Разработки на нём ведутся уже более 45 лет, его использование продлится до конца ХХ1 века.

  • Разведано в 1965 году. Экспедицией руководил В.А. Абазаров.
  • Начало эксплуатации: 1969 г.
  • Местоположение: Нижневартовский район Ханты-Манскийского АО.
  • Геологические запасы: около 7 100 000 000 тонн.
  • Извлекаемые запасы: около 2 700 000 000 тонн.
  • Способ добычи: буровые вышки на искусственно созданных островах, кустовое бурение.

За годы эксплуатации было добыто более 2 300 000 000 тонн углеводородов. В настоящий момент на месторождении проводятся работы по интенсификации добычи. Планируется построить более 570 новых скважин. Основная часть разработок принадлежит НК «Роснефть».

Ромашкинское

Относится к Волго-Уральскому нефтегазоносному бассейну. Является стратегически важным для страны. В течение нескольких десятилетий подряд служит своеобразным «полигоном» для испытания новых технологий нефтедобычи.

  • Открыто в 1948 году бригадой С. Кузьмина и Р. Халикова.
  • Начало эксплуатации: 1952 г.
  • Местоположение: Лениногорский район, г. Альметьевск, Татарстан.
  • Геологические запасы: около 5 000 000 000 тонн.
  • Извлекаемые запасы: около 3 000 000 000 тонн.
  • Способ добычи: метод внутриконтурного заводнения, бурение турбобуром на воде.

Из недр месторождения уже извлечено более 2 200 000 000 тонн нефти. На 2010 год объём разведанных запасов составляет 320 900 000 тонн. Разработку ведёт «Татнефть».

Приобское

Многопластовое низкопродуктивное месторождение. Обладает большим потенциалом, но для его реализации требуются значительные финансовые вложения. Разработку осложняет заболоченность территории, затопляемость, близкое расположение мест нереста рыб.

  • Разведано в 1982 году.
  • Начало эксплуатации: 1988 год.
  • Местоположение: Ханты-Мансийский АО, г. Ханты-Мансийск.
  • Геологические запасы: 5 000 000 000 тонн.
  • Извлекаемые запасы: 2 400 000 000 тонн.
  • Способ добычи: технологии гидравлического разрыва пластов, бурение на воде.

Месторождение относится к Западно-Сибирскому нефтегазоносному бассейну. Более 80% его находится в пойме реки Обь. Уже извлечено около 1 350 000 000 тонн углеводородов. Разработку ведут компании «Роснефть» и «Газпром нефть».

Лянторское

Считается одним из самых сложных для разработки российских месторождений. Относится к Западно-Сибирской нефтегазоносной провинции.

  • Разведано в 1965 году.
  • Начало эксплуатации: 1978 год.
  • Местоположение: Ханты-Мансийский АО, Сургутский район, г. Лянтор.
  • Извлекаемые запасы: 380 000 000 тонн.
  • Способ добычи: девятиточечная обращённая система разработки, фонтанный способ эксплуатации скважин.

Основной оператор месторождения – ОАО «Сургутнефтегаз».

Фёдоровское

Относится к Сургутскому своду, юго-восточная часть Чернореченского поднятия. Входит в класс гигантских месторождений.

  • Открытие: 1971 год.
  • Начало эксплуатации: 1971 год
  • Местоположение: Ханты-Мансийский АО, г. Сургут.
  • Геологические запасы: 2 000 000 000 тонн.
  • Извлекаемые запасы: 189 900 000 тонн.
  • Способ добычи: горизонтальное бурение, ГРП, физико-химический метод обработки призабойной зоны, и т.д.

Является основой ресурсной базы «Сургутнефтегаза». С момента ввода в эксплуатацию на месторождении добыто более 571 000 000 тонн нефти.

Мамонтовское

Относится к классу крупных. Залежи углеводородов находятся на глубине примерно 2 – 2,5 км.

  • Разведано в 1965 году. Руководитель экспедиции – И.Г. Шаповалов.
  • Начало эксплуатации: 1970 год.
  • Местоположение: Ханты-Мансийский АО, г. Пыть-Ях.
  • Геологические запасы: 1 400 000 000 тонн.
  • Извлекаемые запасы: 93 400 000 тонн.

По своему геологическому строению месторождение является сложным. С начала эксплуатации выкачано 561 000 000 тонн нефти. Разработка в данный момент ведётся компанией «Роснефть».

Большое количество нефти проливается при её перевозке, читайте по ссылке , какие экологические проблемы возникают в связи с этим у Азовского моря

Разведка продолжается

В нашей стране есть перспективные места, где добыча может достичь больших объемов.

В 2013 году было открыто месторождение Великое. По первоначальным оценкам, геологические запасы нефти в нём приближаются к 300 000 000 тонн. Точной информации о том, какая часть из этого объёма углеводородов является извлекаемой, пока нет.

Великое – одно из самых крупных нефтяных месторождений, открытых на суше за последние десятилетия. Лицензию на его разработку получила компания «АФБ». Вероятно, в качестве партнёров она будет привлекать и других операторов.

В 2015 году планируется начать освоение Баженовской свиты – это самое крупное

Общая площадь всего арктического шельфа превышает 26 млн км2. Площадь перспективной акватории российского сектора Арктики составляет не менее 5 млн км2. Почти все пространство Арктики расположено на блоке дорифейской континентальной коры. Согласно другой точке зрения существование дорифейской платформы отрицается. Если будет доказано существование дорифейской платформы, то к России отойдет значительная часть Северного Ледовитого океана. Таким образом, вопрос о дорифейской платформе имеет не только научную, но и экономическую значимость.

Последующие события (рифтогенез, формирование зон каледонид, мезозойский тектогенез, раскрытие океанических котловин и др.) определили формирование современной структуры этого региона. В пределах арктического шельфа выделились два крупных блока земной коры. Евразийский (Норвежско-Баренцево-Карский) блок охватывает одноименные моря, западную часть моря Лаптевых, архипелаги и острова (Шпицберген, Земля Франца-Иосифа, Северная Земля, Новая Земля и др.). Амеразийский блок включает восточную часть моря Лаптевых, Восточно-Сибирское море с Новосибирскими островами и Чукотское море с островами Врангеля и Геральда. Блоки разделены рифтовой зоной подводного хребта Гаккеля, ответвлениями этой зоны на юге, а также смежными с хребтом глубоководными котловинами. На режим и особенности нефтегазоносности выделенных в пределах этих блоков осадочных бассейнов существенное влияние оказывал рифтогенез.

В пределах арктической акватории выделяются крупные опущенные участки с повышенной мощностью отложений и поднятия, перспективные для поиска месторождений нефти и газа. На основе тектонического и литолого-стратиграфического анализов выявлены участки, которые можно рассматривать как отдельные провинции, включающие эти осадочные бассейны. Некоторые из них являются доказанными нефтегазоносными, другие рассматриваются как весьма перспективные .

Нефтегазоносные бассейны западного (евразийского) блока содержат значительные ресурсы нефти и газа, что доказано открытием уникального Штокмановского газового месторождения в Баренцевом море, нефтегазовых месторождений в Печорском море (Приразломное, Северо-Долгинское и другие), газовых в Карском море (Русановское и Ленинградское). В норвежском секторе Баренцева моря залежи углеводородов приурочены к нефтегазовому месторождению Сновит и нефтяному месторождению Голиас. По оценкам, проведенным ВНИИокеангеологией, ВНИГРИ и другими организациями, российская часть западно-арктического шельфа, включая Баренцево, Печорское и Карское моря, составляет более 75 % разведанных запасов всего российского шельфа - 8,2 млрд т усл. топлива. В пределах восточного (амеразийского) сектора российской Арктики еще не пробурено ни одной скважины и не открыто ни одного месторождения нефти и газа, но перспективы имеются, судя по наличию крупных месторождений в аналогичных толщах смежных районов Аляски. В восточной части шельфа Чукотского моря американскими компаниями пробурено несколько скважин, показавших признаки нефтеносности.

Согласно принятой в России точке зрения, основная часть акватории Северного Ледовитого океана и сопредельная территория суши Арктики расположена на дорифейской коре континентального типа. Глубина подошвы земной коры (граница Мохоровичича) изменяется от 40-42 км, уменьшаясь под зонами континентального рифтогенеза до 33-35, иногда до 25 км. Граница Конрада фиксируется на глубине 20-25 км.

В геологической истории бассейнов Арктики на удаленных участках выделяется несколько этапов рифтогенеза, часто синхронных . Синхронность проявления рифтогенеза позволяет наметить региональные геологические зоны, протягивающиеся на сотни и тысячи километров и характеризующиеся сходной геологической историей. В итоге удается составить прогноз нефтегазоносности в разобщенных, на первый взгляд, тектонических блоках.

На рисунке 5 представлена геоморфоогическая карта Северного Ледовитого океана.

Рис. 5.

В плане нефтегазоносности каждому осадочно-породному бассейну соответствует нефтегазоносный бассейн. В пределах западно-арктического шельфа выделяются Баренцевоморский, Тимано-Печорский, Южно-Карский, Западно-Сибирский, Северо-Карский, Енисей-Хатангский, Южно-Лаптевский нефтегазоносные бассейны, на территории восточного сектора российской Арктики - Восточно-Сибирский и Чукотский.

Баренцевоморский нефтегазоносный бассейн наиболее изучен, в его пределах выявлены только газовые и газоконденсатные месторождения (Штокмановское, Ледовое, Лудловское, Северо-Кильдинское и Мурманское).

В пределах акваториальной части Тимано-Печорского нефтегазоносного бассейна выявленные месторождения приурочены к зонам продолжения авлакогенов: Варандей-Адзьвинского (Варандей-море, Медынское-море, Долгинское и Приразломное) и Печоро-Колвинского (Поморское газовое). Северо-Гуляевское нефтегазовое месторождение связано с акваториальным продолжением Хорейверской впадины, а нефтяные Песчаноозерское и Ижемко-Таркское месторождения - с акваториальным продолжением Малоземельско-Колгуевской моноклинали.

В пределах Южно-Карского и севера Западно-Сибирского нефтегазоносных бассейнов выявлены уникальные и крупные месторождения на суше п-ова Ямал, а в акваториальной части открыты два уникальных месторождения газа (Русановское и Ленинградское) в Обской и Тазовской губах.

Наиболее благоприятными для формирования нефтегазоносности бассейна оказываются зоны рифтогенных прогибов и сформированные на их месте «сверхглубокие депрессии».

Преимущественно газовые месторождения связаны с инверсионными антиклинальными поднятиями. Они располагаются цепочками в пределах валов и образуют линейные зоны нефтегазонакопления. К таким перспективным зонам в пределах Баренцевоморской зоны рифтогенеза следует отнести все инверсионные структуры (Демидовско-Лудловский мегавал, Штокмановская седловина, поднятия Центральной банки и Ферсмана).

В пределах Южно-Карско-Ямальской зоны рифтогенеза наиболее перспективны на поиски нефтегазовых месторождений инверсионные валы (Нурминский, Малыгинский, Ямбургский, Гыданский, Преображенско-Зеленомысовский, Новопортовский, Уренгойский, Тазовский, Часельский, Верхне-Толькинский, Харампурский).

Интересной, с точки зрения нефтегазоносности, является область развития соляного тектогенеза в пределах Центрально-Баренцевской зоны рифтогенеза. К соляным куполам могут быть приурочены газовые скопления в подсолевом комплексе или же небольшие нефтяные скопления в надсолевом комплексе отложений.

Для формирования нефтяных скоплений наиболее благоприятными оказываются бортовые участки крупных прогибов или отдельные сводовые поднятия в пределах зон рифтогенеза, претерпевшие значительный подъем, который мог повторяться несколько раз в течение геологической истории развития бассейна. В результате мощный мезозойский разрез оказался размытым, а палеозойский разрез осадочного чехла залегает на глубине, доступной для бурения. К таким перспективным структурам на нефть можно отнести свод Федынского, а также бортовые участки Адмиралтейского вала . О возможности сохранения в палеозойских породах нефти свидетельствуют находки в них жидких битумов на крайнем севере Новой Земли, на о-ве Пионер, в западной части Енисей-Хатангского прогиба, на Северной Земле и Таймыре.

В пределах сверхглубоких депрессий максимальной продуктивностью обладают «тектонические узлы», то есть участки, которые попадают в область пересечения зон континентального рифтогенеза разной направленности, а возможно, и разного возраста. Эти «тектонические узлы» отражают пересечение зон с высокой глубинной энергией, что вызывает аномальность всех происходящих в них процессов, в том числе и нефтегазообразования и последующей миграции углеводородов. К таким участкам в пределах Баренцевоморского бассейна можно отнести область пересечения палеозойской субширотной зоны рифтогенеза и наложенной на нее субмеридиональной зоны триасового рифтогенеза, протягивающейся вдоль Новоземельской складчатой области и сформировавшей Южно-Баренцевскую и Северо-Баренцевскую впадины. В эту область попадают гигантское Штокмановское и два крупных месторождения газа (Лудловское и Ледовое).

В пределах Южно-Карско-Западно-Сибирского бассейна к таким тектоническим узлам можно отнести участки пересечения Енисей-Хатангского прогиба как с Южно-Карско-Ямальской зоной рифтогенеза, так и с рифтом моря Лаптевых. В пределах Западной Сибири к подобному тектоническому узлу приурочена большая часть газовых гигантов Ямала.

В западной части моря Лаптевых наиболее перспективны для поисковых работ на нефть и газ зона пересечения двух рифтогенных прогибов, зоны рифтогенеза моря Лаптевых и восточной части Енисей-Хатангского прогиба.

Вблизи пересечений рифтовых прогибов находится крупное Трофимовское поднятие, расположенное частично в дельте Лены, намечены и другие благоприятные структуры.

Перспективы Северо-Чукотского прогиба восточного сектора Российской Арктики оцениваются в основном, по аналогии с Аляской, на основании предполагаемой близости характера разрезов. В северной части Аляски известно около 40 месторождений, из которых разрабатывается около 10. Крупнейшим месторождением в бассейне арктического склона является месторождение Прадхо-Бей, приуроченное к поднятию размером 21?52 км2. Начальные промышленные запасы этого месторождения составляли 1,78 млрд т нефти и 735 млрд м3 газа. Основная залежь находится в пермотриасовых отложениях, песчаниках триаса и нижних горизонтах юры (формация Ивишак группы Садлерочит и вышележащие формации Шублик и Саг-Ривер). Вокруг Прадхо-Бей расположена целая группа более мелких месторождений-сателлитов. Западнее находится месторождение Купарук-Ривер, запасы нефти в песчаниках неокома оцениваются в 200 млн т. В скважинах, пробуренных на шельфе Чукотского моря, известны многочисленные нефте- и газопроявления из известняков формации Лисберн в скв. Попкорн и Даймон; из формации Ивишак триасового возраста в скв. Клондайк получены притоки нефти. Многочисленные нефтепроявления отмечены выше мелового несогласия в породах свит Пебл Шейл, Торок и Нанушук.

В разрезе Чукотского моря выделяются благоприятные структуры, в том числе крупные линейные поднятия, с которыми могут быть связаны зоны нефтегазонакопления. Широко развиты зоны выклинивания и стратиграфического срезания . В пределах Северо-Чукотского прогиба есть благоприятные для нефтегазонакопления структурные формы многих типов (складки, зоны литологического выклинивания, стратиграфического срезания, возможно, диапировые складки), которые являются объектами поиска нефти и газа. Этот прогиб можно рассматривать как нефтегазоносный бассейн, представляющий в восточном секторе российской Арктики наибольший интерес . Перспективы нефтегазоносности следует связывать с надвигами Врангелевско-Геральдской зоны поднятий, где на доступной глубине могут быть вскрыты отложения триаса и верхнего палеозоя. Глинистые породы альба (формация Торок на Аляске) служат эффективным флюидоупором.

Перспективы Северо-Чукотского, Восточно-Сибирского прогибов, котловины Подводников и, возможно, Амундсена и других сверхглубоких впадин Восточной Арктики связаны, прежде всего, с верхнемеловыми и кайнозойскими отложениями. Их мощность превышает 10 км. Помимо центральных частей прогибов перспективами обладают также и их бортовые зоны, такие как склоны поднятий Де-Лонга и Северо-Чукотского. Кроме того, высокие перспективы имеют и инверсионные поднятия палеозойских прогибов там, где они доступны для бурения (Врангелевско-Геральдская зона поднятий).

Приведенный выше обзор показывает, что в центральных, наиболее опущенных частях осадочных бассейнов Арктики сосредоточены главные потенциальные ресурсы газа и нефти. Преимущественно газоносны наиболее опущенные части бассейнов из-за вытеснения нефтяных флюидов газовыми в бортовые зоны прогибов. Нефтеносность связана с мезо-кайнозойским комплексом северо-восточного шельфа, а также с относительно приподнятыми блоками, не испытавшими погружения на глубину 5-6 км западного сектора Арктики. Эти закономерности в пределах отдельных структур различной природы могут быть выявлены только при региональном, широком подходе к изучению Арктики и рассмотрении ее как единого целого на протяжении длительной истории геологического развития

Ромашкинское месторождение является типичным многопластовым месторождением платформенного типа с доказанной нефтеносностью и битуминосностью в широком диапазоне разреза осадочной толщи от живетских до казанских отложений. Нефтеносность разреза осадочной толщи была установлена в 22 горизонтах девона и карбона, из которых промышленные притоки получены из 18 горизонтов. Однако их промышленная значимость весьма различна. Основным объектом эксплуатации являются залежи нефти терригенного девона (пашийский и кыновский горизонты). Коллекторы пашийского (пласт Д 1) и тиманского (пласт Д 0) горизонтов образуют самую крупную многопластовую залежь сводового типа с площадью нефтеностности 4255 км 2 как следует из приложения В. Залежи турнейских отложений связаны с отдельными куполами и являются массивными. Наряду с пластовыми сводовыми распространены и литологические залежи. Все залежи объединены в 12 укрупненых залежей. В среднекаменноугольных отложениях наиболее крупная залежь (1,5х20 км) открыта в юго-западной части месторождения.

Из локально нефтеносных к наиболее значимым могут быть отнесены терригенные отложения живетского яруса и карбонатные породы семилукского, петинского горизонтов франского яруса, елецкого горизонта, заволжского надгоризонта фаменского яруса, а также упинского, малевского и алексинского горизонтов нижнего карбона.

На долю терригенного девона прихоходится 83,5% разведанных запасов. Следующим по промышленной значимости являются терригенные отложения нижнего карбона, содержащие 9,6% разведанных запасов месторождения. В карбонатных отложениях девона и карбона содержится 5,9% разведанных запасов месторождения. Основное промышленное значение здесь имеют залежи верхнетурнейского подъяруса нижнего карбона и верей-башкирские отложения среднего карбона, к которым приурочено 5,4% разведанных запасов. Остальные горизонты ввиду локальной нефтеносности и небольших размеров представляют меньший промышленный интерес. Всего на месторождении выявлена 421 залежь, из которых 41 в терригенных отложениях девона, 162 в терригенных отложениях карбона, 87 в карбонатных пластах верхнетурнейского подъяруса, 3 в среднем карбоне и 128 в других горизонтах.

На месторождении, как и в целом в пределах восточной части Татарстана с учетом характера нефтеносности и степени выдержанности коллекторов продуктивных отложений по разрезу и простиранию, изолированности их друг от друга выделяется семь нефтегазоносных и битумосодержащих комплексов: 1 - терригенной толщи девона; 2 -карбонатного девона и карбонатно-терригенного нижнего карбона; 3 - карбонатного нижнего и карбонатно-терригенного среднего карбона; 4 - карбонатного среднего и верхнего карбона, карбонатного нижней перми; 5 - терригенного уфимской толщи; 6-7 - терригенно-карбонатных толщ верхнеказанского подъяруса. На территории Ромашкинского многопластового месторождения основными нефтесодержащими комплексами являются нижние, а битумоносными - верхние комплексы.

Отложения пашийского горизонта (Д I) и пласта Д 0 кыновского горизонта, из которых были получены наиболее значительные промышленные притоки нефти, слагают самую крупную залежь в разрезе осадочной толщи Ромашкинского месторождения. Это многопластовая сводового типа залежь, структурно приуроченная к обширному пологому поднятию с наиболее приподнятыми участками в районе Миннибаевской и Абдрахмановской площадей и имеющая ряд самостоятельных структур, разделенных незначительными по амплитуде понижениями. Средняя отметка водо-неф- тяного контакта (ВНК) составляет по месторождению минус 1490м. От присводовых участков во все стороны наблюдается пологое погружение слоев к крыльям в основном с незначительными углами падения до отметок минус 1490 - минус 1500м. В центральной части месторождения нефтеносными являются все пласты горизонта Д I , но к периферии их количество уменьшается, как и этаж нефтеносности горизонта как следует из приложения Г.

Отложения пласта Д 0 в основном нефтеносны в северо-западной и северной частях месторождения, а на остальной территории пласт представлен неколлектором. В целом рассмотренные отложения могут рассматриваться как части единой пашийско-кыновской залежи.




Основные промышленные скопления нефти верхнетурнейского подъяруса приурочены к отложениям кизеловского горизонта (пласт B IV) в пределах относительно небольших по размеру локальных структур в основном третьего порядка. Нефтепроявления в черепетских отложениях отмечаются лишь на отдельных высокоприподнятых участках структур. Всего выявлено около 170 залежей, которые по своему строению относятся к массивному типу и контролируются куполовидными (в пределах Восточно-Сулеевской, Азнакаевской, Северо-Альметьевской террас) и брахиантиклинальными (в пределах Миннибаевской и Чишминской террас) поднятиями с амплитудой до 15-45м. Многочисленные залежи, как и бобриковские, объединены в 21 укрупненную по территориальному признаку НГДУ как следует из приложения Приложение Д. Размеры залежей в среднем небольшие (0,5 до 2 км), но ряд из них (201, 221, 224) отличается большими размерами (длина от 6 до 13 км, ширина от 3 до 7 км). При опробовании отдельных скважин по залежам были получены притоки от 0,05 до 35,6 т/сут. При изучении материалов геофизических исследований было определено положение ВНК в пределах залежей и установлено, что его поверхность погружается в северном направлении от абсолютной отметки минус 826 м до минус 900 м.

Анализ литолого-петрографических особенностей и коллекторской характеристики пород верхнетурнейского подъяруса показал, что для отложений Ромашкинского месторождения типичны следующие разновидности карбонатов: 1 - известняки комковатые, 2- известняки сгустково-детритовые, 3 - известняки шламово-детритовые, 4 - известняки фораминиферово-сгустковые, 5 - доломиты и доломитизированные известняки.

Эти типы отличаются друг от друга условиями осадконакопления, развитием и направленностью вторичных процессов, коллекторскими свойствами. Среди них по характеру нефтенасыщения выделяются нефтенасыщенные, слабо нефтенасыщенные, неравномерно нефтенасыщенные, насыщенные окисленной нефтью и светло-серые разности.

Комковатые известняки слагаются комками микрозернистого кальцита и крупным растительным, реже фаунистическим детритом. Размер комков варьирует от 0,1 до 0,8 мм, размер детрита - от 0,06 до 1 мм. Коллекторские свойства этой разности наиболее высокие. Пористость в среднем составляет 14,2%, проницаемость - 0,063 мкм 2 , остаточная водонасыщенность - 26,4%. Структура порового пространства простая, напоминает структуру пор и каналов в песчаниках. Поры межформенные, крупные (0,45 мм), многочисленные, форма их чаще бывает изометрической. Система каналов хорошо разработана. Каналы относительно короткие и широкие (0,01- 0,15 мм). Пористость этой разности первична, но объем пор увеличивался процессами растворения - следы выщелачивания при большом увеличении видны на большей части крупных пор. Комковатые известняки интенсивно нефтенасыщены.

Сгустково-детритовые известняки являются наиболее распространенной разностью. Сложены они детритом, преимущественно водорослевым, сгустками и комками микрозернистого кальцита. Цементом этой разности служит первичный микрозернистый кальцит или кальцит вторичный, разнозернистый. Структура порового пространства сложная: поры межформенные, внутриформенные, каналы значительно извилистее, длиннее и более узкие, чем в комковатых известняках. Пористость в среднем равна 11,3%, проницаемость - 0,006 мкм 2 , остаточная водонасыщенность - 38,7%.

Шламово-детритовые известняки имеют коллекторские свойства ниже кондиционных значений. Нефтенасыщение наблюдается в них редко в виде слабых пятен. Сложена эта разность водорослевым мелким детритом и шламом. Цемент обильный, представлен микрозернистым кальцитом, тип цементации базальный, порово-базальный. Глинистый материал присутствует в рассеянном состоянии в породе, его общее содержание в отдельных прослоях достигает 10%. Поры в шламово-детритовых известняках, в основном, очень мелкие (0,01-0,03 мм) межзерновые; поры размером до 0,1 мм встречаются редко, в основном они изолированные. Пористость этой разности - 7,8%, проницаемость - 0,0003 мкм 2 , остаточное водонасыщение - 63%.

Фораминиферово-сгустковые известняки сильно кальцитизированные породы, сложенные сгустками, реже комками микрозернистого кальцита и раковинами фораминифер. Цемент базальный. Поры редкие, вторичные, расположены локально. Пористость фораминиферовосгустковых известняков равна 5%, проницаемость - 0,00005 мкм 2 , остаточная водонасыщенность - 80%. Нефтенасыщение в этих разностях не встречено, все образцы светло-серые, очень плотные.

Доломиты и доломитизированные известняки в верхнетурнейском подъярусе встречаются очень редко, в виде единичных маломощных прослоев. Нефтенасыщение в них не отмечено. Пористость равна 6,6%, проницаемость - 0,00013 мкм 2 .

Общая физико-литологическая характеристика коллекторов кизеловского горизонта по залежам может быть представлена следующим образом.

Кровельная часть турнейского яруса почти повсеместно представлена уплотненными породами (известняки шламово-детритовые и кальцитизированные фораминиферово-сгустковые). Коллекторские свойства ниже кондиционных: пористость равна 7%, проницаемость - 0,0003 мкм 2 , остаточная водонасыщенность - 65%. Толщина кровельной части составляет 0,2-0,5 м и не превышает 1,5 м.

Основной объем кизеловского горизонта составляет пласт B IV . В нем резко преобладают комковатые и сгустково-детритовые разности известняков. Шламово-детритовая разность составляет 15,8%, фораминиферово-сгустковая - 1,9%, доломиты - 0,1%. Шламово-детритовые известняки встречаются в виде тонких невыдержанных прослоек, фораминиферово-сгустковые - в виде единичных линз, стяжений. Пористость этого пласта в целом равна 11,9%, проницаемость - 0,029 мкм 2 , остаточная водонасыщенность - 38,9%.

Пачка пород в подошве кизеловского горизонта (репер С-4) представлена шламово-детритовыми (45,4%) и сгустково-детритовыми (43,2%) известняками (в последних интенсивно нефтенасыщенных разностей не встречено). Около 10% объема составляют непроницаемые сильно кальцитизированные разности, 1,7% составляют известняки комковатые, которые в этой пачке пропитаны окисленной нефтью или слабо нефтенасыщенные. В единичных случаях встречаются водоносные комковатые известняки. В целом, пористость рассматриваемой пачки равна 8%, проницаемость - 0,001 мкм 2 , остаточная водонасыщенность - 58%.

Для детального изучения строения кизеловских и черепетских отложений использовались данные скважин, в которых эти интервалы разрезабыли пройдены со 100% отбором керна большого диаметра. Наблюдаемое переслаивание карбонатных разностей толщиной от 10-20 см и до 1 м подтверждает значительную неоднородность разреза верхнетурнейского подъяруса, обусловленную главным образом седиментационными процессами. Установлено, что верхняя часть кизеловского горизонта имеет наилучшую коллекторскую характеристику и представлена переслаиванием сгустково-детритовых и комковатых известняков, с преобладанием последних. Кровля кизеловского горизонта и подстилающая пачка Rp C-4 состоят практически на 100% из шламово-детритовых известняков. Пласт BIII представлен в основном переслаиванием сгустково-детритовых и шламово-детритовых известняков. Существенно по интервалам меняется и проницаемость. Можно также отметить, что интенсивное нефтенасыщение встречается во всех комковатых известняках и в части сгустково-детритовых. Нефть отсутствует во всех фораминиферо-сгустковых и доломитизированных известняках.

Установлено, что в карбонатных породах в целом для верхнетурнейского подъяруса по емкостно-фильтрационным свойствам, с учетом их нефтенасыщенности, достаточно четко выделяются 4 группы коллекторов: I -высокопроницаемые, II - среднепроницаемые, III - слабопроницаемые, IV - неколлекторы. К I группе относятся известняки комковатые, интенсивно нефтенасыщенные. Ко II группе - известняки сгустково-детритовые, равномерно нефтенасыщенные.В III-ю группу включены сгустково-детритовые слабои неравномерно нефтенасыщенные известняки. Неколлекторами (IV группа) являются не содержащие нефти плотные сгустково-детритовые разности, известняки шламово-детритовые и фораминиферово-сгустковые, доломиты.

В нефтенасыщенной части залежей отмечается преобладание высокопроницаемых коллекторов I группы с усредненной пористостью 14,2%, проницаемостью - 0,063 мкм 2 , остаточной водонасыщенностью - 26,4%. В целом, в верхнетурнейских пластах Ромашкинского месторождения доля коллекторов высоко- и среднепроницаемых составляет 73%. Слабопроницаемые коллекторы (III группа) составляют 10% объема пластов; нефть в этих породах на данном этапе разработки не извлекается. Неколлекторы составляют 16,8%.

В объем высокоамплитудных залежей Ромашкинского месторождения входят отложения не только кизеловского горизонта, но и черепетского горизонта. Черепетские отложения представлены теми же структурно-генетическими разностями, что и кизеловские, но за счет некоторого уменьшения размеров породосоставляющих элементов, более обильного цемента в сгустково-детритовых разностях, коллекторские свойства их ниже. Коллекторские свойства отложений определялись как по керновым данным, так и по результатам геофизических исследований скважин. Проницаемость, определенная по керну, составила в среднем 0,030 мкм 2 . Результаты определения пористости и проницаемости по достаточно представительной информации как по керну, так и по геофизике можно считать достаточно сопоставимыми. Средняя пористость составляет около 12,0% (может достигать и 20,0%), а нефтенасыщенность - около 72,0% (может достигать 90,0%). При подсчете запасов, на основе детального изучения различного вида зависимостей, были приняты следующие нижние кондиционные пределы параметров для пород-коллекторов: по пористости - 9,8%, по проницаемости - 0,0015 мкм 2 и по нефтенасыщенности-54,0%.

При изучении характеристик неоднородности отложений установлено, что доля коллекторов составляет в среднем около 50%, а о достаточно высокой степени неоднородности отложений по разрезу свидетельствует величина коэффициента расчлененности, которая может достигать по отдельным залежам 2-3 и более.

Промышленные скопления нефти в терригенных отложениях нижнего карбона приурочены к отложениям радаевского, бобриковского и нижней части тульского горизонтов. Наиболее распространены залежи в песчаниках радаевско-бобриковского и нижней части тульского горизонта. Всего выявлено около 100 залежей, которые имеют различные размеры и этажи нефтеносности. Они контролируются отдельными локальными поднятиями или группой структур. Прерывистое строение и неоднородность пластов-коллекторов, обусловленные изменением литологофациального состава отложений, наряду со структурными факторами, обуславливают весьма сложную конфигурацию залежей в плане при наличии участков замещения в самых различных частях локальной структуры. Поэтому наряду с пластово-сводовыми залежами широко распространены и литологически осложненные залежи.

Многочисленные залежи (более 80) месторождения в настоящее время объединены в 37 укрупненных по принадлежности к территориям НГДУ как следует из приложения Е. Залежи характеризуются широким диапазоном по размерам (по длине от 2 до 35 км, по ширине от 1 до 21 км) и по высоте (от 3 до 47 м).

Самыми крупными из них являются залежи 1, 5, 8, 12 и 31. Покрышкой для залежей служит глинисто-карбонатная толща тульского горизонта мощностью 8-12 м. Продуктивные пласты подстилаются непроницаемыми породами елховского горизонта, имеющих мощность от 1,8 до 4,0 м. Анализ данных по скважинам, вскрывшим ВНК в залежах бобриковских отложений, указывает на наличие регионального погружения его поверхности с юго-запада на север и восток от отметки минус 823 м до минус 946 м. Дебиты скважин в среднем составляют 15 т/сут.

Продуктивные горизонты осадочной толщи Ромашкинского месторождения характеризуются значительным разнообразием особенностей залегания по площади и разрезу, а также литолого-петрографическому составу, коллекторским и фильтрационным свойствам и насыщенности слагающих пород как показано в таблице 1.

Таблица 1-Характеристика продуктивных отложений осадочной толщи Ромашкинского месторождения

Горизонты, ярусы

Показатели

Живетский

Пашийский

Кыновский

Данковолебедян.

Заволжский

Турнейский

Бобриковский

Серпуховский

Башкирский

Верейский

Тип залежи

массивн.-

лит.ослож.

лит.ослож.

Тип коллектора

терриген.

терриген.

терриген.

карбонат.

карбонат.

карбонат.

терриген.

карбонат.

карбонат.

карб.-тер.

Общая толщина, м

Нефтенасыщенная толщина,м

Средняя пористость, д.ед.

Средняя проницаемость, мкм 2

Нефтенасыщенность, д.ед.

Коэффициент песчанистости, д.ед.

Коэффициент расчлененности, д.ед.

Пластовая температура, о С

Абсолютная отметка ВНК, м

Необходимо отметить наряду с общей характеристикой этих горизонтов, наиболее детально рассмотрены особенности геологического строения пашийско-кыновских отложений.

В наибольшей степени изученными являются основные эксплуатационные объекты Ромашкинского месторождения, приуроченные к продуктивным терригенным отложениям пашийского горизонта (Д I) и пласта Д 0 кыновского горизонта. Пашийский горизонт (Д I) является многопластовым объектом, представленным переслаиванием песчаных, алевролитовых, аргиллитовых разностей терригенных пород. Характерной особенностью отложений пашийского горизонта в целом является частая смена песчано-алевритовых пород глинистыми разностями как по разрезу, так и по площади. За основные реперы, которые регионально выдержаны и используются для корреляции разрезов, приняты «глины» и «верхний известняк» . Нижняя граница горизонта проводится по кровле аргиллитовой пачки (репер «глины»), перекрывающей пласт Д II . Верхняя граница проводится по подошве карбонатной пачки (репер «верхний известняк»). Кроме того, для более уверенного разделения горизонта на верхне- и нижнепашийские пачки, был выделен дополнительный репер «аргиллит», залегающий над кровлей пласта «в». В целом использование этих хорошо выдержанных по площади реперов позволяет достаточно уверенно сопоставлять разрезы горизонта Д I по скважинам, расположенным на различных участках месторождения. Для этой цели успешно используются сводно-статистические разрезы. В настоящее время на месторождении принята схема с выделением в пределах горизонта Д I 4 пластов верхнепашийской (пласты «а», «б 1 », «б 2 », «б 3 ») и 4 пластов нижнепашийской (пласты «в», «г 1 », «г 2+3 » и «д») пачек, которые отличаются по характеру залегания по площади и разрезу. В целом площадным строением отличаются пласты пачки «г» на всей территории месторождения, «а» - на севере и северо-востоке, «в» - на западе месторождения. Для других пластов горизонта линзовидность, полосчатость (преимущественно меридионального направления) является преобладающей.

В интервале пласта «а», толщина которого достигает 5-6 м, может выделяться до двух-трех прослоев. Наибольшее количество слияний с нижележащим пластов «б» наблюдается в пределах Азнакаевских площадей. По характеру распространения пласта «а» выделяются две зоны: северо-восточная с площадным распространением и наибольшей мощностью коллекторов и юго-западную, где коллекторы имеют полосообразное и линзообразное строение.

В пределах зонального интервала «б» выделяется три прослоя, индексируемые как пласты «б 1 », «б 2 », «б 3 » и наиболее развитые на Азнакаевской площади. Наиболее частыми являются слияния пластов «б 1 » и «б 2 ». Толщина прослоев в основном равна 2-3 м, а при их слиянии достигает 10-12 м.

Пласт «в» выделяется в виде прослоя песчано-алевритовых пород толщиной 3-4 м, залегая между прослоями аргиллитов, верхний из которых является дополнительным репером. Наибольшее площадное распространение пласт имеет на Миннибаевской площади, а на других участках месторождения преобладают полосообразные и линзовидные формы залегания.

В пределах зонального интервала пласта «г» выделяются прослои толщиной 4-6 м, но более характерны многочисленные их слияния и тогда толщина коллектора может достигать 10-12 м. Как уже отмечалось, в основном пласт имеет площадное распространение коллекторов.

Пласт «д» является самым нижним из пластов горизонта. Он представлен в основном одним прослоем толщиной 1-6 м и залегает между довольно выдержанными по площади аргиллитами муллинского горизонта и прослоем алеврито-глинистых пород, часто размытых, в результате чего пласт «д» сливается с вышележащим пластом «г». Площадное рапространение пласт имеет лишь на отдельных участках месторождения, а в целом для него характерна линзовидная и полосообразная форма залегания.

Следует отметить, что на отдельных участках месторождения гидродинамически связанными по разрезу могут быть три-четыре и более пластов горизонта ввиду наличия зон их слияния и в этом случае толщина коллектора может достигать 20-25м.

В целом изучение особенностей строения пластов горизонта Д I указывает на наличие значительной геологической неоднородности отложений как по разрезу, так и по площади Ромашкинского месторождения. Об этом, например, свидетельствуют полученные с помощью АРМ «Лазурит» об изменении по площадям средних величин общей (от 28,2 до 46,3 м) и нефтенасыщенной (от 3,7 до 16,6 м) толщин, а также значений пористости (от 0,188 до 0,207), проницаемости (от 0,339 до 0,666 мкм 2) и нефтенасыщенности (0,691 до 0,849), коэффициентов песчанистости (К пес) - от 0,259 до 0,520 и расчлененности (К р) - от 1,7 до 5,3. Естественно, что более широкий диапазон изменения рассматриваемых параметров наблюдается по отдельным пластам и группам коллекторов, критерии выделения которых рассмотрены ниже. Это подтверждается данными, приведенными по всем площадям Ромашкинского месторождения в таблице 2. Не рассматривая детально характер изменения всех приведенных в ней параметров, следует лишь подчеркнуть, что наиболее значительны различия между пластами и выделяемыми группами коллекторов по пористости, проницаемости и нефтенасыщенности, а также по толщине между пластами верхне- и нижнепашийской пачек горизонта Д I .

Литологическая характеристика пластов-коллекторов пашийского горизонта для всех песчано-алевритовых пачек близка. Для них характерна мономинеральность. В обломочном материале преобладает кварц (около 90%) с небольшой примесью зерен полевых шпатов, чешуек мусковита и устойчивых минералов. Преобладающими среди аутигенных минералов являются вторичный кварц, пирит, кальцит, сидерит, доломит, реже - фосфорит, каолинит, хлорит, анатаз. В целом можно отметить несколько большую глинистость и повышенную карбонатность отложений верхнепашийского подгоризонта по сравнению с нижнепашийскими.

Таблица 2-Средние значения толщин, коллекторских свойств и параметров неоднородности отложений горизонта ДI по площадям Ромашкинского месторождения

Одной из важных особенностей геологического строения Ромашкинского месторождения, как и подобных ему крупных нефтяных месторождений платформенного типа, является наличие обширных по площади и содержанию значительных запасов водонефтяных зон (ВНЗ), которые большей частью приурочены к нижним пластам горизонта Д I . Пологое залегание коллекторов, значительная послойная и зональная неоднородность являются, с одной стороны, причиной чередования в пределах ВНЗ участков развития пластов нефтеносных (бесконтактная зона) и с подошвенной водой (контактная зона), а с другой - того, что запасы, содержащиеся в этих коллекторах, взаимосвязаны. Эти факторы учитывались в процессе разработки для повышения эффективности выработки запасов по зонам различной степени насыщенности.

Параметры пластовых нефтей пашийского горизонта изменяются в следующих пределах: плотность нефти от 787,0 до 818,0 кг/м 3 , среднее значение - 803,0 кг/м 3 ; вязкость нефти от 2,7 до 6,5 мПа.с, среднее - 4,5 мПа.с; объемный коэффициент при дифразгазировании - от 1,1020 до 1,1840, среднее - 1,1549; газовый фактор - 50,1 м 3 /т; давление насыщения - 9,0 МПа.

Средние величины параметров нефти по отложениям турнейского яруса по различным залежам составляют: давление насыщения - 4,1 мПа, газовый фактор - 5,9 м 3 /т, плотность пластовой нефти 879,0 кг/м 3 , вязкость - 32,6 мПа.с. Нефти турнейского яруса относятся к группе высокосернистых и парафиновых нефтей. Плотность поверхностной нефти равна 904,0 кг/м 3 . Содержание серы в нефти изменяется от 1,2 до 4,8% (в среднем 3,2%), асфальтенов от 2,1 до 10,4% (в среднем 3,4%),парафинов - от 2,3 до 14,0% (в среднем 3,0% весовых). При разгонке нефти получены следующие фракции: до 100 0 С - 4,1%, до 200 0 С - 12,9% и до 300 0 С - 29,0% объемных.

В данном разделе дается краткая осредненная характеристика нефтей и газов как по региональным, так локально нефтеносным горизонтам как показано в таблицах 3-5.

Таблица 3-Параметры пластовой нефти

Толщины, м

Коллекторские свойства

Показатели неоднородности

сыщенная

Абдрахманов

Ю-Ромашкин

Зай-Каратайская

Куакбашская

Миннибаевская

Альметьевская

С-Альметьев

Березовская

Показатели

пашийский

горизонт

кыновский

горизонт

лебедянский

горизонт

заволжский

горизонт

турнейский

бобриковский

горизонт

серпухов-

ский ярус

башкирский

верейский

горизонт

Давление насыщения, МПа

Газовый фактор при диффе-

ренциальном разгазировании

в рабочих условиях, м 3 /т

P 1 =0,5 МПа Т 1 = 9 0 С

P 2 =0,1 МПа Т 2 = 9 0 С

Суммарный газовый фактор, м 3 /т

Плотность, кг/м 3

Вязкость, мПа.с

Объемный коэффициент при

дифференциальном разгазирова-

нии в рабочих условиях, доли ед.

П лотность дегазированной неф-

ти при дифразгазировании, кг/м 3

Таблица 4-Физико-химические свойства и фракционный состав разгазированной нефти

Средние значения по продуктивным отложениям

Показатели

пашийский

горизонт

кыновский

горизонт

лебедянский

горизонт

заволжский

горизонт

турнейский

горизонт

серпуховский ярус

башкирский

верейский

горизонт

Вязкость, мПа.с

Смол силикагелевых

Асфальтенов

Парафинов

Выход фракций в

весовых %

Н.К. - 100 0 С

Таблица 5 - Содержание серы по объектам Ромашкинского месторождения

Горизонты

Объекты (залежи, площади)

Диапазон изменений

Среднее значение

муллинский,

ардатовский,

воробьевский

кыновский,

Абдрахмановская

пашийский

Южно-Ромашкинская

Западно-Лениногорская

Зай-Каратайская

Куакбашская

Миннибаевская

Альметьевская

Северо-Альметьевская

Березовская

Восточно-Сулеевская

Алькеевская

Чишминская

Ташлиярская

Сармановская

Азнакаевская

Карамалинская

Павловская

Зеленогорская

Восточно-Лениногорская

Холмовская

В целом по месторождению

данк. - лебедян.

залежь №680

заволжский

залежь №665

турнейский

залежи НГДУ "Иркеннефть"

залежи НГДУ "Лениногорскнефть"

бобриковский

залежь №1

залежь №2

залежь №3

залежь №4

залежь №5

залежь №8

залежь №9

залежь №12

залежь №15

залежь №24

залежь №31

error: